CS-536 : Notes

Charlie Stuart : src322

Fall 2021

Note: Section numbers are completely made up based on my brain understanding things

Contents

1 Math Review 5
1.1 Vectors, Points, Scalars . 5
1.1.1 Operations . 5
1.2 Matrixes . 8
1.2.1 Operations . 8
1.3 Calculus . 10
1.3.1 Derivatives . 10
1.3.2 Partial Derivatives . 10
1.4 Combinatorics . 11

2 Graphics Basic Vocab 12

3 Curves 13
3.1 Fuctional Representations . 13
3.1.1 Explicit Functions . 13
3.1.2 Implicit Functions . 13
3.1.3 Parametric Functions . 13
3.1.4 Comparisions . 13
3.1.5 Points and Curves . 14
3.1.6 Convex Hulls . 14
3.2 Parametric Curves 15
3.2.1 Mathematical Definition 15
3.3 Continuity 16
3.4 Bézier Curves 18
3.4.1 Bernstein Polynomials 18
3.4.2 General Form 19
3.4.3 Properties 19
3.4.4 Issues 19
3.5 Hermite Curves 20
3.5.1 Algebraic Form 20
3.5.2 Blending/Basis Curves 21
3.5.3 Matrix Form 22
3.5.4 Hermite and Bézier 23
3.6 Catmull-Rom Splines 24
3.6.1 Tension 24
3.7 B-Splines 25
3.7.1 Knots 25
3.7.2 Drawing a Line 26
3.7.3 Properties 27
3.8 NURBS 28
3.8.1 Weights 29
4 Drawing Parametic Curves 31
4.1 de Casteljau Algorithm 31
4.1.1 Linear Interpolations 31
4.1.2 Drawing a Line 31
4.1.3 Observations 32
4.2 Subdivisions 32
4.2.1 Recursive Subdivisions 33
4.3 Bézier Curves 34
4.4 NURB Conic-Sections 35
4.5 Knot Insertion 36
4.5.1 Properties 37
4.6 de Boor Algorithm 37
4.7 Oslo Algorithm 39
4.8 Barycentric Coordinates 39
5 Surfaces 41
5.1 Exact vs Approximation 41
5.2 Wireframes 42
5.3 Surface Models 42
5.4 Biparametric Surfaces 43
5.5 Bicubic Surfaces 44
5.6 Bicubic Bézier Patches 45
5.6.1 Surface Normals 46
5.7 B-Spline Surfaces 48
5.8 Surfaces of Revolution 49
5.9 Drawing Parametic Surfaces 50
5.9.1 Object Space Conversion 50
5.9.2 Image Space Conversion 51
5.9.3 Silhouette Rays 52
6 Clipping 53
$6.1 \quad$ Scissor Clipping. 53
6.2 Cohen-Sutherland Line Clipping 53
6.3 Cyrus Beck Technique 54
6.4 Polygon Clipping 56
6.5 Sutherland-Hodgman Algorithm 57
6.6 Weiler-Atherton Algorithm 58
6.6.1 Intersection 58
6.6.2 Union 59
7 Filling 62
7.1 Rectangles 62
7.2 Polygons 62
7.3 Curved Objects 64
7.4 Boundary Fill Algorithm 65
8 Color 66
8.1 Vocab 66
8.2 Physics and Eyes 66
8.3 Intensity 66
8.4 Physics Background 67
8.5 Color Models 68
8.5.1 RGB 68
8.5.2 CMY(K) 69
8.5 .3 XYZ 69
8.5 .4 YIQ 71
8.5.5 $\mathrm{HS}[\mathrm{B}-\mathrm{V}]$ and HSL 71
9 Solid Modeling 73
9.1 Constructive Solid Geometry (CSG) 74
10 3D Viewing 76
10.1 Projection 76
10.1.1 Planar Geometric Projections 76
10.2 Perspective Projections 77
10.3 Parallel Projections 78
10.4 Scanline Rendering 79
10.5 Back Face Culling 80
10.6 Z-Buffering 81
10.7 Depth Cueing 82
10.8 Ray Tracing 82

1 Math Review

1.1 Vectors, Points, Scalars

Affine Geometry : I can't find a sane definition of this, but vector geometry basically
Point : Has 1 value for each dimension, represents a single spot
Vector : An n-tuple of real numbers. Uses \vec{v} notation
Scalar : An value use to scale a vector

1.1.1 Operations

Point-Point Difference : Given points p and $q, q-p$ creates a vector v

Point-Vector Difference : Given point p and vector $v, p+v$ and $p-v$ create a point q

Vector-Vector Addition : Given vectors v and $u, v+u$ and $v-u$ create a vector w

Scalar Multiplication : Given a vector v and a scalar $s, s v$ creates a vector w

Linear Combination :

Given vectors $v_{1}, v_{2}, \ldots, v_{n}$ and scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ then $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}$ is the linear combination of them.

Affine Combinations :

Given that $v_{1}, v_{2}, \ldots, v_{n}$ are vectors and $\sum_{i}^{n} \alpha_{i}=1$ then:
$\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}$
For Example: $R=(1-\alpha) P+\alpha Q$

Dot Product : Given vectors u and v,

$$
u \cdot v=\sum_{i=1}^{n} u_{i} v_{i}
$$

Euclidian Distance : Distance from (x, y) to $(0,0)$

$$
\begin{array}{rr}
\sqrt{\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}} & \text { Distance between two points } \\
\sqrt{(x-0)^{2}+(y-0)^{2}} & \text { Plug in values } \\
\sqrt{x^{2}+y^{2}} & \\
\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}} & \text { Generalize for } n \text { dimensions } \\
\sqrt{x_{1} x_{1}+x_{2} x_{2}+\ldots+x_{n} x_{n}} & \\
\sqrt{\vec{x} \cdot \vec{x}} &
\end{array}
$$

This calculates the length of x Notation: $\|\vec{x}\|$
Normalization : Normalizing a vector makes it have length 1 but keeps its direction

$$
\hat{v}=\frac{\vec{v}}{\|\vec{v}\|}
$$

Orthogonal : Two vectors are orthogonal if $\vec{u} \cdot \vec{v}=0$
Angle Between Vectors : Given vectors u and v that share a starting point, the angle θ between them is

$$
\theta=\cos ^{-1} \hat{u} \cdot \hat{v}
$$

Projection of Vectors : Given vector u projected onto vector v

$$
\begin{aligned}
& \overrightarrow{u_{1}}=\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} \\
& \overrightarrow{u_{2}}=\vec{u}-\overrightarrow{u_{1}}
\end{aligned}
$$

1.2 Matrixes

Matrix : An n dimensional vector

1.2.1 Operations

Identity : The identity matrix of a square $n \mathrm{x} n$ matrix is one where there's 1 in the diagonal and 0s everywhere else

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Addition :

Matrix addition is commutative and associative
Given matrices A and B of the same dimensions, then $A+B$ is:

$$
\left[\begin{array}{ll}
a_{00} & a_{01} \\
a_{10} & a_{11}
\end{array}\right]+\left[\begin{array}{ll}
b_{00} & b_{01} \\
b_{10} & b_{11}
\end{array}\right]=\left[\begin{array}{ll}
a_{00}+b_{00} & a_{01}+b_{01} \\
a_{10}+b_{10} & a_{11}+b_{11}
\end{array}\right]
$$

Scalar Multiplication : Given a matrix A and scalar c, then $c A$ is

$$
c\left[\begin{array}{ll}
a_{00} & a_{01} \\
a_{10} & a_{11}
\end{array}\right]=\left[\begin{array}{ll}
c a_{00} & c a_{01} \\
c a_{10} & c a_{11}
\end{array}\right]
$$

Matrix Multiplication :

Matrix multiplication is NOT commutative
Given matrices A and B, then each element of C is found with:

$$
c_{i j}=\sum_{s=0}^{n} a_{i s} b_{s j}
$$

To visualize:

$$
\begin{gathered}
{\left[\begin{array}{lll:l}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right]} \\
{\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
\hdashline a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]}
\end{gathered}\left[\begin{array}{llll}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24} \\
c_{31} & c_{32} & c_{33} & c_{34} \\
\hdashline c_{41} & c_{42} & c_{43} & c_{44}
\end{array}\right]
$$

Determinant : Given the following 2 x 2 matrix:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

The determinant is $a d-b c$
Helps us find a vector orthogonal to two other vectors and to determine the plane of a polygon
Cross Product : Given two non-parallel vectors A and B then $A \times B$ gives a vector C that is orthogonal to A and B

$$
A \times B=C=\left[\left(a_{y} b_{z}-a_{z} b_{y}\right),\left(a_{z} b_{x}-a_{x} b_{z}\right),\left(a_{x} b_{y}-a_{y} b_{x}\right)\right]
$$

Matrix Transpose : Swap rows and columns

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
a & b & c
\end{array}\right] \\
A^{T} & =\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
\end{aligned}
$$

Some notes:

- $\left(A^{T}\right)^{T}=A$
- $(A+B)^{T}=A^{T}+B^{T}$
- $(c A)^{T}=c\left(A^{T}\right)$
- $\left.(A B)^{T}\right)=B^{T} A^{T}$

Matrix Inverse : Given a square matrix A, if $A B=B A=I$ then $B=A^{-1}$

1.3 Calculus

1.3.1 Derivatives

$$
\begin{aligned}
f(x) & =\alpha x^{n} \\
\frac{d f(x)}{d x} & =\alpha n x^{n-1}
\end{aligned}
$$

1.3.2 Partial Derivatives

$$
\begin{aligned}
f(x) & =\alpha x^{n} y^{m} \\
\frac{\partial f(x)}{\partial x} & =\alpha n x^{n-1} y^{m}
\end{aligned}
$$

1.4 Combinatorics

Combinations : $\binom{x}{y}, x$ choose y

$$
\binom{x}{y}=\frac{x!}{y!(x-y)!}
$$

2 Graphics Basic Vocab

Geometric Modeling : Mathematics and algorithms that define 2D and 3D geometric objects
Lighting and Shading : Math, physics, and algorithms that specify how light interacts with matter ${ }^{6}$
Rendering : Algorithms that take geometry, lighting, shading, and viewing information and generate an image

Visualization : Techniques for visually communicating and exploring scientific, medical, or abstract data
Perception : Study of how humans perceive light and information
Animation : Algorithms for making models change over time
Simulation : Using physics to make models move
Raster 2D Graphics : Pixels

- X11 bitmap (XBM), X11 pixmap (XPM), GIF, TIFF, PNG, JPG
- Lossy, jaggies when transforming, good for photos

Vector 2D Graphics : Drawing Instructions

- Postscript, CGM, Fig, DWG
- Non-lossy, smooth when scaling, good for line art and diagrams

3 Curves

3.1 Fuctional Representations

Polynomial : Linear combination of integer powers of x, y, z
Polynomial Degree : I found a few different definitions here

- Online says: the highest degree of a polynomial. $x^{2} y^{3}+x^{2}=0$ has degree 5
- The slides says: the total sum of powers but the example is wrong $x^{2}+y^{2}+z^{2}-r^{2}=0$ has degree 6

3.1.1 Explicit Functions

Representing one variable with another like $y=x^{2}$. Works if $\exists x$ there's only one y. What if I have a sphere? $z= \pm \sqrt{r^{2}-x^{2}-y^{2}}$

3.1.2 Implicit Functions

Curves and surfaces are represented as "the zeros"
Good for representing $(n-1)$ dimensional objects in $n \mathrm{D}$ space
Sphere: $x^{2}+y^{2}-z^{2}-r^{2}=0$

3.1.3 Parametric Functions

2D Curve : Two functions of one parameter $(x(u), y(u))$
3D Curve : Three functions of one parameter $(x(u), y(u), z(u))$
3D Surface : Three functions of two parameters $(x(u, v), y(u, v), z(u, v))$
So the sphere example here is not algebraic, but is parametric

$$
\begin{aligned}
& x(\theta, \phi)=\cos \phi \cos \theta \\
& y(\theta, \phi)=\cos \phi \sin \theta \\
& z(\theta, \phi)=\sin \phi
\end{aligned}
$$

3.1.4 Comparisions

- Explicit isn't used in graphics
- Implicit is good for:
- Computing ray/surface tension
- Point inclusion (inside/outside test)
- Mass and volume properties
- Parametric is good for:
- Subdivision, faceting for rendering
- Surface and area properties
- Parametric is popular in graphics
- Mathematical representation can be very complex
- Function to shape isn't obvious

3.1.5 Points and Curves

To deal with complex formulas for curves, we use curve control points

Lagrangian Interpolation

- $n+1$ points for a polynomial of degree n
- Curve wiggles through each point
- Not good for smooth flat curves

Approximation

- Points are weights that tug on the curve or surface

3.1.6 Convex Hulls

Convex Hull : The smallest convex container of a set of points

3.2 Parametric Curves

Basic Representation : $x=x(t), y=y(t)$

Properties:

- Individual functions are single valued
- Approximations are done with piecewise polynomial curves
- Each segment is given by two cubic polynomials (x, y)
- Concise

3.2.1 Mathematical Definition

The cubic polynomials that define a parametric curve segment is given by:

$$
Q(t)=[x(t) y(t) z(t)]^{T}
$$

and we know that

$$
\begin{aligned}
x(t) & =a_{x} t^{3}+b_{x} t^{2}+c_{x} t+d_{x} \\
y(t) & =a_{y} t^{3}+b_{y} t^{2}+c_{y} t+d_{y} \\
z(t) & =a_{z} t^{3}+b_{z} t^{2}+c_{z} t+d_{z} \\
& 0 \leq t \leq 1
\end{aligned}
$$

and that coefficients are represented with the matrices:

$$
\begin{gathered}
C=\left[\begin{array}{llll}
a_{x} & b_{x} & c_{x} & d_{x} \\
a_{y} & b_{y} & c_{y} & d_{y} \\
a_{z} & b_{z} & c_{z} & d_{z}
\end{array}\right] \\
T=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]^{T}
\end{gathered}
$$

Then we know that:

$$
Q(t)=C \cdot T
$$

$Q(t)$ can be defined with four constraints if we rewrite $C=G \cdot M$
Geometry Matrix : G, a four element constraint matrix
Basis Matrix : M, a 4 x 4 matrix
$Q(t)$ is now a weighted sum of the columns of the geometry matrix, G, each of which represents a point of vector in 3 -space. It is expanded as:

$$
Q(t)=\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{llll}
G_{1} & G_{2} & G_{3} & G_{4}
\end{array}\right]\left[\begin{array}{llll}
m_{11} & m_{21} & m_{31} & m_{41} \\
m_{12} & m_{22} & m_{32} & m_{42} \\
m_{13} & m_{23} & m_{33} & m_{43} \\
m_{14} & m_{24} & m_{34} & m_{44}
\end{array}\right]\left[\begin{array}{c}
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]
$$

We can now manually multiply this out to get the following weighted sums of the elements:

$$
\begin{aligned}
x(t) & =\left(t^{3} m_{11}+t^{2} m_{21}+t m_{31}+m_{41}\right) g_{1 x}+\left(t^{3} m_{12}+t^{2} m_{22}+t m_{32}+m_{42}\right) g_{2 x} \\
& +\left(t^{3} m_{13}+t^{2} m_{23}+t m_{33}+m_{43}\right) g_{3 x}+\left(t^{3} m_{14}+t^{2} m_{24}+t m_{34}+m_{44}\right) g_{4 x} \\
y(t) & =\left(t^{3} m_{11}+t^{2} m_{21}+t m_{31}+m_{41}\right) g_{1 y}+\left(t^{3} m_{12}+t^{2} m_{22}+t m_{32}+m_{42}\right) g_{2 y} \\
& +\left(t^{3} m_{13}+t^{2} m_{23}+t m_{33}+m_{43}\right) g_{3 y}+\left(t^{3} m_{14}+t^{2} m_{24}+t m_{34}+m_{44}\right) g_{4 y} \\
z(t) & =\left(t^{3} m_{11}+t^{2} m_{21}+t m_{31}+m_{41}\right) g_{1 z}+\left(t^{3} m_{12}+t^{2} m_{22}+t m_{32}+m_{42}\right) g_{2 z} \\
& +\left(t^{3} m_{13}+t^{2} m_{23}+t m_{33}+m_{43}\right) g_{3 z}+\left(t^{3} m_{14}+t^{2} m_{24}+t m_{34}+m_{44}\right) g_{4 z}
\end{aligned}
$$

Blending Functions : B, the cubic polynomial weights in $t, B=M T$ so $Q(t)=G \cdot B$
M and G matrices vary by curve

3.3 Continuity

Continuity : Two curves are C^{i} continuous at a point p iff the i-th derivatives of the curves are equal at p
Geometric Continuity : G^{i}, endpoints meet and the tangent vectors' directions are equal
Parametric Continuity : C^{i}, endpoints meet and the tangent vectors' directions and magnitudes are equal, $G^{i} \in C^{i}$
discontinuity

Not continuous

C^{0} continuous

C^{1} continuous

C^{2} continuous

Given two curves Q^{l} and Q^{r}, the condition for C^{0} and C^{1} continuity is that the end points and their tangent vectors are equal

$$
\begin{aligned}
Q^{l}(1) & =Q^{r}(0) \\
\frac{d Q^{l}}{d t}(1) & =\frac{d Q^{r}}{d t}(0)
\end{aligned}
$$

We can define the parametric tangent vector of a curve with the derivative of $Q(t)$ as shown:

$$
\frac{d}{d t} Q(t)=Q^{\prime}(t)=\left[\begin{array}{l}
\frac{d}{d t} x(t) \\
\frac{d}{d y} y(t) \\
\frac{d}{d t} z(t)
\end{array}\right]=\frac{d}{d t} C \cdot T=C \cdot\left[\begin{array}{c}
3 t^{2} \\
2 t \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 a_{x} t^{2}+2 b_{x} t+c_{x} \\
3 a_{y} t^{2}+2 b_{y} t+c_{y} \\
3 a_{z} t^{2}+2 b_{z} t+c_{z}
\end{array}\right]
$$

This means, looking back at the above image, in order to compute continuity for $Q(t)$, we need to compute it for each component individually in 3D space

$$
\begin{gathered}
x^{l}(1)=x^{r}(0)=P_{4_{x}} \\
\frac{d}{d t} x^{l}(1)=3\left(P_{4_{x}}-P_{3_{x}}\right) \\
\frac{d}{d t} x^{r}(0)=3\left(P_{5_{x}}-P_{4_{x}}\right)
\end{gathered}
$$

Rinse and repeat with y and z

3.4 Bézier Curves

Bézier Curves : Defined with two end points plus two control points for the tangent vectors
$\mathbf{P}_{\mathbf{0}}:$ Start point
$\mathbf{P}_{\mathbf{3}}:$ End point
$\overline{\mathbf{P}_{\mathbf{0}} \mathbf{P}_{\mathbf{1}}}:$ Tangent at $\mathbf{P}_{\mathbf{0}}$
$\overline{\mathbf{P}_{\mathbf{2}} \mathbf{P}_{\mathbf{3}}}:$ Tangent at $\mathbf{P}_{\mathbf{3}}$
Bézier Geometry Matrix : $G_{B}=$
$\left[\begin{array}{ll}P_{0} \quad P_{1} \quad P_{2} \quad P_{3}\end{array}\right]$
Bézier Basis Matrix $: M_{B}$
$Q(t)=G_{B} \cdot M_{B} \cdot T$

$Q(t)=G_{B} \cdot M_{B} \cdot T$

3.4.1 Bernstein Polynomials

General Form: : i-th Bernstein polynomial for a degree k Bézier curve:

$$
b_{i k}(u)=\binom{k}{i}(1-u)^{k-i} u^{i}
$$

Properties:

- Invariant under transformations
- Form a partition of unity
- Partition Of Unity : Given x functions, $\sum_{i=0}^{x} f_{i}(t)=1 \forall t$
- Low degree Bernstein Polynomials (BPs) can be written as high degree BPs
- BP derivatives are a linear combination of BPs
- Form a basis for space of polynomials with degree $\leq k$

Cubic Bernstein Blending Functions : Represent the blending proportions among the control points:

$$
\begin{aligned}
& b_{03}(u)=(1-u)^{3} \\
& b_{13}(u)=3 u(1-u)^{2} \\
& b_{23}(u)=3 u^{2}(1-u) \\
& b_{33}(u)=u^{3}
\end{aligned}
$$

Note: The coefficients follow Pascal's triangle

Which gives us:

$$
\begin{aligned}
& Q(t)=G \cdot B \\
& Q(t)=b_{03}(t) G_{1}+b_{13}(t) G_{2}+b_{23}(t) G_{3}+b_{33}(t) G_{4} \\
& Q(t)=(1-u)^{3} P_{0}+3 u(1-u)^{2} P_{1}+3 u^{2}(1-u) P_{2}+u^{3} P_{3}
\end{aligned}
$$

3.4.2 General Form

Given:

- Control points $P_{0}, P_{1}, \ldots, P_{k}$
- $0 \leq t \leq 1$

Then:

$$
Q(t)=\sum_{i=0}^{k} P_{i+1}\binom{k}{i}(1-t)^{k-i} t^{i}
$$

3.4.3 Properties

- k control points defines a single curve of degree $k-1$
- Affine invariance
- Invariance under affine parameter transformations
- Convex Hull Property
- Curve lies completely within the convex hull of control points
- Endpoint interpolation
- Intuitive for design
- Curve mimics the control polygon

3.4.4 Issues

- More complex curves require more control points
- Potentially high degree polynomial with many wiggles
- Bézier blending functions have global support over the whole curve
- Moving one point changes the whole curves

Can be improved by linking many low degree Bézier curves together

3.5 Hermite Curves

- 3D curve of polynomial bases
- Geometrically defined by positions and tangents at end points
- Not guaranteed to exist within a convex hull
- Supports tangent-continuous $\left(C^{1}\right)$ composite curves

3.5.1 Algebraic Form

Knowing that derivatives give us a tangent line at a point, we can build a line in the following form:
$\mathbf{P}(\mathbf{u})$: The line over time u
$\mathbf{P}^{\mathbf{u}}(\mathbf{u})$: The derivative of $P(u)$
$: P^{u}(u)=P^{\prime}(u)=\frac{d P}{d u}(u)$
$\mathbf{P}(\mathbf{0})$: Control/End Point 0
$\mathbf{P}(\mathbf{1}):$ Control/End Point 1
$\mathbf{P}^{\mathbf{u}}(\mathbf{0})$: Control Tangent Vector 0
$\mathbf{P}^{\mathbf{u}}(\mathbf{1}):$ Control Tangent Vector 1

The curve is very simple, just a parametric algebraic polynomial. A cubic curve is given by the following formulas with coefficients a, b, c, d :

$$
\begin{aligned}
P(u) & =a u^{3}+b u^{2}+c u+d \\
P^{u}(u) & =P^{\prime}(u)=3 a u^{2}+2 b u+c
\end{aligned}
$$

We can now calculate the control points and control tangents:

$$
\begin{aligned}
P(0) & =a 0^{3}+b 0^{2}+c 0+d \\
\mathbf{P}(\mathbf{0}) & =\mathbf{d} \\
P(1) & =a 1^{3}+b 1^{2}+c 1+d \\
\mathbf{P}(\mathbf{1}) & =\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d} \\
P^{u}(0) & =3 a 0^{2}+2 b 0+c \\
\mathbf{P}^{\mathbf{u}}(\mathbf{0}) & =\mathbf{c} \\
P^{u}(1) & =3 a 1^{2}+2 b 1+c \\
\mathbf{P}^{\mathbf{u}}(\mathbf{1}) & =\mathbf{3 a}+\mathbf{2} \mathbf{b}+\mathbf{c}
\end{aligned}
$$

Using the values of the control points and tangents, we can calculate the constants:

$$
\begin{aligned}
& a=2 P(0)-2 P(1)+P^{u}(0)+P^{u}(1) \\
& b=-3 P(0)+3 P(1)-2 P^{u}(0)-P^{u}(1) \\
& c=P^{u}(0) \\
& d=P(0)
\end{aligned}
$$

Now we can put this all together and plug it in (this is messy sorry):

$$
\begin{aligned}
P(u) & =a u^{3}+b u^{2}+c u+d \\
P(u) & =\left(2 P(0)-2 P(1)+P^{u}(0)+P^{u}(1)\right) u^{3} \\
& +\left(-3 P(0)+3 P(1)-2 P^{u}(0)-P^{u}(1)\right) u^{2} \\
& +P^{u}(0) u \\
& +P(0) \\
P(u) & =2 P(0) u^{3}-2 P(1) u^{3}+P^{u}(0) u^{3}+P^{u}(1) u^{3} \\
& -3 P(0) u^{2}+3 P(1) u^{2}-2 P^{u}(0) u^{2}-P^{u}(1) u^{2} \\
& +P^{u}(0) u \\
& +P(0) \\
P(u) & =2 P(0) u^{3}-3 P(0) u^{2}+P(0) \\
& -2 P(1) u^{3}+3 P(1) u^{2} \\
& +P^{u}(0) u^{3}-2 P^{u}(0) u^{2}+P^{u}(0) u \\
& +P^{u}(1) u^{3}-P u(1) u^{2} \\
P(u) & =\left(2 u^{3}-3 u^{2}+1\right) P(0) \\
& +\left(-2 u^{3}+3 u^{2}\right) P(1) \\
& +\left(u^{3}-2 u^{2}+u\right) P^{u}(0) \\
& +\left(u^{3}-u^{2}\right) P^{U}(1)
\end{aligned}
$$

This gives us the full equations:

$$
\begin{array}{r}
P(u)=\left(2 u^{3}-3 u^{2}+1\right) P(0)+\left(-2 u^{3}+3 u^{2}\right) P(1)+\left(u^{3}-2 u^{2}+u\right) P^{u}(0)+\left(u^{3}-u^{2}\right) P^{u}(1) \\
P^{u}(u)=P^{\prime}(u)=\left(6 u^{2}-6 u\right) P(0)+\left(-6 u^{2}+6 u\right) P(1)+\left(3 u^{2}-4 u+1\right) P^{u}(0)+\left(3 u^{2}-2 u\right) P^{u}(1)
\end{array}
$$

3.5.2 Blending/Basis Curves

Given we transform the messy $P(u)$ function into:

$$
P(u)=H_{1}(u) P(0)+H_{2}(u) P(1)+H_{3}(u) P^{u}(0)+H_{4}(u) P^{u}(1)
$$

The blending/basis functions are then:
$\mathbf{H}_{\mathbf{1}}(\mathbf{u})=2 u^{3}-3 u^{2}+1$
$\mathbf{H}_{\mathbf{2}}(\mathbf{u})=-2 u^{3}+3 u^{2}$
$\mathbf{H}_{\mathbf{3}}(\mathbf{u})=u^{3}-2 u^{2}+u$
$\mathbf{H}_{\mathbf{4}}(\mathbf{u})=u^{3}-u^{2}$

We now see the following behavior:

At $u=0$:

$$
\begin{aligned}
& 0=H_{2}, H_{3}, H_{4}, H_{1}^{\prime}, H_{2}^{\prime}, H_{4}^{\prime} \\
& 1=H_{1}, H_{3}^{\prime}
\end{aligned}
$$

At $u=1$

$$
\begin{aligned}
& 0=H_{1}, H_{3}, H_{4}, H_{1}^{\prime}, H_{2}^{\prime}, H_{3}^{\prime} \\
& 1=H_{2}, H_{4}^{\prime}
\end{aligned}
$$

3.5.3 Matrix Form

We can define the Hermite blending functions as the following where M_{H} is the Hermite characteristic matrix

$$
H=\left[\begin{array}{llll}
H_{1}(u) & H_{2}(u) & H_{3}(u) & H_{4}(u)
\end{array}\right]=\left[\begin{array}{cccc}
2 & -3 & 0 & 1 \\
-2 & 3 & 0 & 0 \\
1 & -2 & 1 & 0 \\
1 & -1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
u^{3} \\
u^{2} \\
u \\
1
\end{array}\right]=M_{H} U=B_{H}
$$

We then collect the control points and tangents into the following geometry matrix G :

$$
G=\left[\begin{array}{llll}
P(0) & P(1) & P^{u}(0) & P^{u}(1)
\end{array}\right]
$$

Putting this together gives us the following matrix definition of $P(u)$:

$$
P(u)=G M_{H} U=G B_{H}
$$

3.5.4 Hermite and Bézier

Bézier to Hermite Transformation:

$$
\begin{aligned}
q_{0} & =p_{0} \\
q_{1} & =p_{3} \\
t_{0} & =3\left(p_{1}-p_{0}\right) \\
t_{1} & =3\left(p_{2}-p_{3}\right)
\end{aligned}
$$

Hermite to Bézier Transformation:

$$
\begin{aligned}
& p_{0}=q_{0} \\
& p_{1}=q_{0}+\frac{1}{3} t_{0} \\
& p_{2}=q_{1}-\frac{1}{3} t_{1} \\
& p_{3}=q_{1}
\end{aligned}
$$

Note: Derivative is defined as 3 times offset

3.6 Catmull-Rom Splines

\mathbf{n} : Number of points
$\mathbf{p}_{\mathbf{0}}$: Start point
$\mathbf{p}_{\mathbf{n}}$: End point
$\mathbf{T}_{\mathbf{0}}$: Tangent at 0 (Given)
$\mathbf{T}_{\mathbf{n}}$: Tangent at n (Given)
$\mathbf{T}_{\mathbf{k}}$: Tangent at any point p_{k} where $k \neq 0, n$ is $\frac{p_{k+1}-p_{k-1}}{2}$

3.6.1 Tension

To apply Tension \mathcal{T} to a Catmull-Rom spline, adjust the tangents at interior joint points p_{k} with:

$$
T_{k}=(1-\mathcal{T}) \frac{p_{k+1}-p_{k-1}}{2}
$$

When $\mathcal{T}=0$, we get a standard Catmull-Rom spline
When $\mathcal{T}=1$, the tangent is 0
We can scale user-given tangent vectors with tension:

$$
\begin{aligned}
& T_{0}^{\prime}=(1-\mathcal{T}) T_{0} \\
& T_{n}^{\prime}=(1-\mathcal{T}) T_{n}
\end{aligned}
$$

3.7 B-Splines

Rational : B-splines are defined as a ratio of cubic polynomials
Control Points : P_{i}
Blending Function : Bi Points defined by blending the control points

$$
P(t)=\sum_{i=0}^{m} B_{i, d}(t) P_{i}
$$

There are no limits on the value of t. but $B_{i}(t)$ is mostly 0 .
Cox-deBoor Recursion : Defines the blending function $B_{i, d}$ where i is the point and d is the degree of the curve

$$
\begin{aligned}
B_{i, 0}(t) & = \begin{cases}1 & t_{i} \leq t<t_{i+1} \\
0 & \text { otherwise }\end{cases} \\
B_{i, d}(t) & =\frac{t-t_{i}}{t_{i+d}-t_{i}} B_{i, d-1}(t)+\frac{t_{i+d+1}-t}{t_{i+d+1}-t_{i+1}} B_{i+1, d-1}(t)
\end{aligned}
$$

$\mathbf{B}_{\mathbf{i}, \mathbf{0}}(\mathbf{t})$: Step function. Either 0 or 1
$\mathbf{B}_{\mathbf{i}, \mathbf{1}}(\mathbf{t})$: Piecewise function that spans two intervals. Goes from 0 to 1
$\mathbf{B}_{\mathbf{i}, \mathbf{2}}(\mathbf{t})$: Piecewise quadratic function that spans four intervals.
Goes from 0 to $\frac{1}{4}, \frac{1}{4}$ to $\frac{3}{4}$ then back
$\mathbf{B}_{\mathbf{i}, \mathbf{3}}(\mathbf{t})$: Piecewise cubic function that spans four intervals. Goes from 0 to $\frac{1}{6}, \frac{1}{6}$ to $\frac{2}{3}$ then back

3.7.1 Knots

Notice how from $t=0 t o t=1$, all the functions are not zero, this means the sum comes to 1 . The convex hull
property holds for all segments of a B-spline. Notice how segments connect to each other and transisition into each other.

Knots need to be chosen uniformly to get a uniform B-Spline. The closer knots are, the more weight given to them:

For example, the knots $\{0,0,0,0,1,1,1,1\}$ creates a Bezier curve.

3.7.2 Drawing a Line

When building lines, don't use $0 \leq t \leq 1$. Now use the knot points: $t_{\text {min }} \leq t_{0} \leq t_{1} \leq \ldots \leq t_{m-1} \leq t_{m} \leq t_{\max }$ When drawing, we have the following specifications:
\mathbf{m} : Must be greater or equal to 3
$\mathbf{P}_{\mathbf{i}}$: Control points $P_{0} \ldots P_{m}$. Represented by squares in the above image
$\mathbf{t}_{\mathbf{i}}$: Knot points $t_{3} \ldots t_{m+1}$. Represented by circles in the above image
$\mathbf{Q}_{\mathbf{i}}$: The cubic polynomial line segments being drawn $Q_{3} \ldots Q_{m}$

- Defined over knot interval $\left[t_{i}, t_{i+1}\right]$
- Defined by control points $P_{i-3} \ldots P_{i}$

3.7.3 Properties

Local Control : Since the polynomial coefficients only depend on a few points, adjusting knots only affects local curve. See below how moving only P_{4} affects the local curve.

Convex Hull : B-Splines follow the convex hull property

Continuity : Since derivatives are really easy for cubics, it's easy to show C^{0}, C^{1}, and C^{2}

$$
\begin{gathered}
p(u)=\sum_{k=0}^{3} u^{k} c_{k}=c_{0}+u c_{1}+u^{2} c_{2}+u^{3} c_{3} \\
p^{\prime}(u)=c_{1}+2 c_{2} u+3 c_{3} u^{2}
\end{gathered}
$$

Benefits

Rational : Ratio of Polynomials
Since they're rational, they're invariant under:

- rotation
- scale
- translation
- perspective transformations

These transformations only redefine the control points then the curve is regenerated. Non-rationals are variant under perspective transformations.

Rational splines can also precisely define conic sections and other analytic functions. You can only approximate conics with non-rationals.

3.8 NURBS

NURBS : Non-Uniform Rational B-splines
Different notations can be used:
Blending Function : $B_{i, d}(u)$ or $N_{i, d}(u)$
Parameter Variable : u or t
Curve : C or P or Q
Control Points : P_{i} or B_{i}
Variables for order, degree, number of control points, etc are consistently inconsistent.
When defined using homogeous coordinates, the 4 th dimension of each P_{i} is the weight. In a 2D space, this is the 3 rd dimension of P_{i}.

If the curve is defined as a weighted euclidian, a separate constant w_{i} is the weight of each control point.
Basic Idea : Four dimensional non-uniform B-splines which are normalized via homogeneous coordinates
Given functions $X(t), Y(t), Z(t)$ and $W(t)$ that are all cubic polynomials with controls points specified in homogeneous coordinates $[x, y, z, w]$ then:

$$
\begin{aligned}
P_{i} & =[x, y, z, w] \\
x(t) & =\frac{X(t)}{W(t)} \\
y(t) & =\frac{Y(t)}{W(t)} \\
z(t) & =\frac{Z(t)}{W(t)}
\end{aligned}
$$

In a 2 D case, $Z(t)=0$
Example : On the left is a unit circle in 3D homogeneous coordinates, the right is the rational parameterization of it

$$
\begin{array}{rlrl}
X(t) & =1-t^{2} & x(t) & =\frac{1-t^{2}}{1+t^{2}} \\
Y(t) & =2 t & y(t) & =\frac{2 t}{1+t^{2}} \\
Z(t) & =0 & z(t) & =0 \\
W(t) & =1+t^{2} &
\end{array}
$$

We can define a d-th degree NURBS curve C as:

$$
C(u)=\frac{\sum_{i=0}^{n-1} w_{i} B_{i, d}(u) P_{i}}{\sum_{i=0}^{n-1} w_{i} B_{i, d}(u)}
$$

This can also be written as:

$$
C(u)=\sum_{i=0}^{n-1} P_{i} \frac{w_{i} B_{i, d}(u)}{\sum_{j=0}^{n-1} w_{j} B_{j, d}(u)}
$$

The weights now induce a new rational basis function, R which can be defined as:

$$
R_{i}(u)=\frac{w_{i} B_{i, d}(u)}{\sum_{j=0}^{n-1} w_{j} B_{j, d}(u)}
$$

Give that $R_{i, d}(u)$ is a rational basis function on $u \in[0,1]$ we can write the general form of the curve as:

$$
C(u)=\sum_{i=0}^{n-1} R_{i, d}(u) P_{i}
$$

3.8.1 Weights

Since w_{i} of P_{i} only affects the range [u_{i}, u_{i+k+1}), the following behavior is observed:

- When $w_{i}=0$, then P_{i} does not contribute to C
- When w_{i} increases, point B and curve C are pulled toward P_{i} and pushed away from P_{j}
- When w_{i} decreases, point B and curve C are pulled toward P_{j} and pushed away from P_{i}
- As w_{i} approaches infinity, B approaches 1

4 Drawing Parametic Curves

4.1 de Casteljau Algorithm

Developed by Paul de Casteljau at Citroën in the late 1950s

4.1.1 Linear Interpolations

Given a line from point a to point b, interpolating between them is an affine combination of points

Given:

- C, a continuous curve
- P, an arbitrary plane
- $P L I$, a piecewise linear interpolant of C

Then the number of crossings of P by $P L I$ is no greater than those of C

4.1.2 Drawing a Line

Base Case : Two points

- Control points $\left(p_{0}, p_{1}\right)$
- Map parameter u to $\overline{p_{0} p_{1}}$

$$
p(u)=(1-u) p_{0}+u p_{1} \forall 0 \leq u \leq 1
$$

A Step Up : Three points

- Control points $\left(p_{0}, p_{1}, p_{2}\right)$
- Interpolate $\overline{p_{0} p_{1}}$ and $\overline{p_{1} p_{2}}$
- $0 \leq u \leq 1$

$$
\begin{aligned}
p_{01}(u) & =(1-u) p_{0}+u p_{1} \\
p_{11}(u) & =(1-u) p_{1}+u p_{2} \\
p(u) & =(1-u) p_{01}(u)+u p_{11}(u)
\end{aligned}
$$

Based off the fact ratio $(a, b, c)=\frac{b-a}{c-a}$, so:

$$
\operatorname{ratio}\left(p_{0}, p_{01}(u), p_{1}\right)=\operatorname{ratio}\left(p_{1}, p_{11}(u), p_{2}\right)=\operatorname{ratio}\left(p_{01}(u), p(u), p_{11}\right)=u
$$

General Form:

Control Points: $p_{0}, p_{1}, \ldots, p_{n} \in R^{3}, t \in R$

$$
\begin{aligned}
& p_{i r}(u)=(1-u) p_{i(r-1)}(u)+u p_{(i+1)(r-1)}(t)\left\{\begin{array}{l}
r=1, \ldots, n \\
i=0, \ldots, n-r
\end{array}\right. \\
& p_{i 0}(u)=p_{i} \\
& p_{0 n}(u)=?
\end{aligned}
$$

4.1.3 Observations

- Interpolation along the curve is based only on u
- Drawing the curve's pixels requires iterating over u at sufficient refinement
- What is the right increment? Not constant
- Compute points and define a polyline

4.2 Subdivisions

Basics :

- Primitives defined by control polygons
- Set of control points is not unique
- More than one way to compute a curve
- Subdivision refines representation of an object by adding control points

With Bezier Curves:

- Given control points $p_{0}, p_{1} . p_{2}, p_{3}$
- Calculate $p(0.5)$ to subdivide the curve into two curves
- New control point $p_{03}=p(0.5)$
- Use edges to find new control points for each curve

$$
\begin{aligned}
& -p_{01}(0.5)=0.5 p_{0}+0.5 p_{1} \\
& -p_{02}(0.5)=0.5 p_{01}+0.5 p_{11} \\
& -p_{21}(0.5)=0.5 p_{2}+0.5 p_{3} \\
& -p_{12}(0.5)=0.5 p_{11}+0.5 p_{21}
\end{aligned}
$$

- Two new curves
- Control points: $p_{0}, p_{01}, p_{02}, p_{03}$
- Control points: $p_{03}, p_{12}, p_{21}, p_{3}$
- Overall curve shape is not affected

4.2.1 Recursive Subdivisions

Curve Flatness Test : If d_{1} and d_{2} are both less than some ε, then the curve is flat

Distance from a Point to a Line :

1. Project point $P,\left(p_{x}, p_{y}\right)$, onto line $L,\left[\left(l_{x 0}, l_{y 0}\right),\left(l_{x 1}, l_{y 1}\right)\right]$
2. Find location of the projection

$$
d(P, L)=\frac{\left(l_{y 0}-l_{y 1}\right) p_{x}+\left(l_{x 1}-l_{x_{0}}\right) p_{y}+\left(l_{x 0} l_{y 0}-l_{x 1} l_{y 0}\right)}{\sqrt{\left(l_{x 1}-l_{x 0}\right)^{2}+\left(l_{y 1}-l_{y 0}\right)^{2}}}
$$

The Algorithm : DrawCurveRecSub(curve, e)

1. if straight(curve, e)
(a) DrawLine(curve)
2. else
(a) SubdivideCurve(curve, LeftCurve, RightCurve)
(b) DrawCurveRecSub(LeftCurve,e)
(c) DrawCurveRecSub(RightCurve,e)

4.3 Bézier Curves

Iterate Over t with formulas:

- Increment t
- Calculate $x(t), y(t), z(t)$
- Can't easily control segment lengths and error

Iterate Over t with de Casteljau:

- Increment t
- Apply de Casteljau algorithm
- Successive interpolation of control polygon edges

Recursive Subdivision:

- Recursively subdivide de Casteljau polygons until they are approximately flat
- Use Bresenhams to draw line

Degree Elevation:

- Given control points
- Generate additional control points
- Increase the degree of the curve
- Keep the curve the same
- In the limit, this converges to the curve defined by the original control points
- Generate control points until the points generated approximate the curve necessary

4.4 NURB Conic-Sections

Obtained by projecting a parabola onto a plane. Assign w to each control point

- 3D Case: Rational curve is a 4D object
- 2D Case: Rational curve is a 3D object

We can define the curve with three control points where the weights of the first and last control point are 1, Given the knot vector $\{0,0,0,1,1,1\}$, the weight of the center control point gives the following behavior:

- $w<1$: Ellipse
- $w=1$: Parabola
- $w>1$: Hyperbola

We can create a circular arc when the two lengths of the control point polygon are equal. The chord connecting the first and last control points must connect with the polygon at an angle θ which is equal to half of the angle of the arc. For example, in a 60° then $\theta=30^{\circ}$. Additionally, the weight of the inner control point must be $\cos (\theta)$. The knot vector, just as above is $\{0,0,0,1,1,1\}$

Circle : Three 120° arcs
knots $=\{0,0,0,1,1,2,2,3,3,3\}$

$$
\begin{aligned}
& \mathbf{B}_{0}=\{-0.866,0.5,1\} \\
& \mathbf{B}_{\mathbf{1}}=\{-1.732,-1,0.5\} \\
& \mathbf{B}_{\mathbf{2}}=\{0,-1,1\} \\
& \mathbf{B}_{\mathbf{3}}=\{1.732,-1,0.5\} \\
& \mathbf{B}_{\mathbf{4}}=\{0.866,0.5,1\} \\
& \mathbf{B}_{\mathbf{5}}=\{0.2,0.5\} \\
& \mathbf{B}_{6}=B_{0}=\{-0.866,0.5,1\}
\end{aligned}
$$

Square : Four 90° arcs
knots $=\left\{0,0,0, \frac{1}{4}, \frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \frac{3}{4}, 1,1,1\right\}$

$$
\begin{aligned}
& \mathbf{B}_{\mathbf{0}}=\{1,0,1\} \\
& \mathbf{B}_{\mathbf{1}}=\left\{1,1, \frac{\sqrt{2}}{2}\right\} \\
& \mathbf{B}_{\mathbf{2}}=\{0,1,1\} \\
& \mathbf{B}_{\mathbf{3}}=\left\{-1,1, \frac{\sqrt{2}}{2}\right\} \\
& \mathbf{B}_{4}=\{-1,0,1\} \\
& \mathbf{B}_{\mathbf{5}}=\left\{-1,-1, \frac{\sqrt{2}}{2}\right\} \\
& \mathbf{B}_{6}=\{0,-1,1\} \\
& \mathbf{B}_{\mathbf{7}}=\left\{1,-1, \frac{\sqrt{2}}{2}\right\} \\
& \mathbf{B}_{\mathbf{8}}=B_{0}=\{1,0,1\}
\end{aligned}
$$

4.5 Knot Insertion

Basic Idea: We want to add points but keep the same curve.

- Decide where we want to add control point

- Add knot
- Find the affected $d-1$ control points
- Replace it with d new control points

Now looking at this more in-depth, we're given:

$$
\begin{array}{rlr}
P & =\left(P_{0}, P_{1}, \ldots, P_{n}\right) & \text { Control Points } \\
U & =\left(u_{0}, u_{1}, \ldots, u_{m}\right) & \text { Knots } \\
d & =\text { degree of curve } &
\end{array}
$$

We want to insert a new knot u_{k} into the knot vector without changing the shape. If $u_{k} \in\left[u_{i}, u_{i+1}\right)$, only the basis functions for $\left(P_{i}, \ldots, P_{i-d}\right)$ are non-zero.

Find d new control points, everything else remains unchanged:

- Q_{i} on edge $\left(P_{i-1}, P_{i}\right)$
- Q_{i-1} on edge $\left(P_{i-2} P_{i-1}\right)$
- ...
- Q_{i-d+1} on edge $\left(P_{i-d} P_{i-d+1}\right)$

We actually define our new control point as:

$$
Q_{j}=\left(1-\alpha_{j}\right) P_{j-1}+\alpha_{j} P_{j}
$$

We define α as:

$$
\alpha_{j}=\frac{u_{k}-u_{j}}{u_{j+d}-u_{j}}
$$

4.5.1 Properties

- Increasing multiplicity of a knot decreases number of non-zero basis functions at that knot
- At a knot of multiplicity d, there is only one non-zero basis function
- Corresponding curve $p(u)$ is affected by only one control point P_{i}

4.6 de Boor Algorithm

This is a generalization of de Casteljau's Algorithm.
Goal : Find a fast and numerically stable way for finding a point on a B-spline curve
Observation : If knot u is inserted d times to a B-spline, then $p(u)$ is the point on the curve


```
function DeBoors \(\left(P_{n}, u_{m}, u\right)\)
    if \(u \in\left[u_{i}, u_{i+1}\right)\) and \(u \neq u_{i}\) then
        \(h:=d\)
    end if
    if \(u=u_{i}\) and \(\left(u_{i}\right.\) is a knot of multiplicity \(\left.s\right)\) then
        \(h:=d-s\)
    end if
    for Affected Control Point do
        \(P_{i-s, 0}:=P_{i-s}\)
    end for
    for \(r:=1 \rightarrow h\) do
        for \(j:=i-d+r \rightarrow i-d\) do
            \(a_{j, r}:=\frac{u-u_{j}}{u_{j+d-r+1}-u_{j}}\)
            \(P_{j, r}:=\left(1-a_{j, r}\right) P_{j-1, r-1}+a_{j, r} P_{j, r-1}\)
        end for
    end for
    return \(P_{i-s, d-s}\)
end function
```


Compare To De Casteljau's Algorithm:

- De Casteljau's Algorithm
- Dividing points are computed with a pair of numbers $(1-u)$ and u that don't change
- Can be used for subdivision
- Uses all control points
- De Boor's Algorithm
- These pairs of numbers are different and depend on the column number and control point number
- Intermediate control points not sufficient
- Only affected control points $(d-1)$ are used in the computation

4.7 Oslo Algorithm

Goal : Subdivision for B-Splines

- Curve C with control points $\left(P_{0}, \ldots, P_{m}\right)$
- Insert knot at any point
- Two new points P_{k}^{\prime} and $P_{k}^{\prime \prime}$
- Apply recursively on new parts:

$$
\begin{aligned}
& -P_{0}, \ldots, P_{k}^{\prime}, P_{k}^{\prime \prime}, \ldots, P_{m-1} \\
& -P_{1}, \ldots, P_{k}^{\prime}, P_{k}^{\prime \prime}, \ldots, P_{m}
\end{aligned}
$$

4.8 Barycentric Coordinates

Given a triangle with vertices $\{A, B, C\}$ and weights $\left\{w_{A}, w_{B}, w_{C}\right.$), their center of gravity (barycenter) will coincide with any point K inside the triangle. This defines K as:

$$
\begin{aligned}
K & =w_{A} A+w_{B} B+w_{C} C 1 \\
w_{B} & =0 \\
w_{C} & =0
\end{aligned}
$$

$$
=w_{A}+w_{B}+w_{C} w_{A}=0
$$

$$
\text { Points on } B C
$$

$$
\text { Points on } A C
$$

Points on $A B$

To calculate the weights now, we can calculate the are of each of the subtriangles, , then use ratios:

$$
\begin{gathered}
w_{A}=\frac{\operatorname{SubArea}(B, C, K)}{\operatorname{Area}(A, B, C)} \\
w_{B}=\frac{\operatorname{SubArea}(A, C, K)}{\operatorname{Area}(A, B, C)} \\
w_{C}=\frac{\operatorname{SubArea}(A, B, K)}{\operatorname{Area}(A, B, C)} \\
\operatorname{SubArea}(d, e, f)=\frac{|(d-f) *(e-f)|}{2}
\end{gathered}
$$

Given vertices $\{A, B, C\}$ and a centroid K we can find the coordinates of the weights:

$$
\begin{aligned}
x_{K} & =w_{A} x_{A}+w_{B} x_{B}+w_{C} x_{C} \\
y_{K} & =w_{A} y_{A}+w_{B} y_{B}+w_{C} y_{C} \\
x_{K} & =w_{A} x_{A}+w_{B} x_{B}+\left(1-w_{A}-w_{B}\right) x_{C} \\
y_{K} & =w_{A} y_{A}+w_{B} y_{B}+\left(1-w_{A}-w_{B}\right) y_{C} \\
w_{A} & =\frac{\left(x_{B}-x_{C}\right)\left(y_{C}-y_{K}\right)-\left(x_{C}-x_{K}\right)\left(y_{B}-y_{C}\right)}{\left(x_{A}-x_{C}\right)\left(y_{C}-y_{K}\right)-\left(x_{B}-x_{C}\right)\left(y_{A}-y_{C}\right)} \\
w_{B} & =\frac{\left(x_{A}-x_{C}\right)\left(y_{C}-y_{K}\right)-\left(x_{C}-x_{K}\right)\left(y_{A}-y_{C}\right)}{\left(x_{B}-x_{C}\right)\left(y_{C}-y_{K}\right)-\left(x_{A}-x_{C}\right)\left(y_{B}-y_{C}\right)} \\
w_{C} & =1-w_{A}-w_{B}
\end{aligned}
$$

5 Surfaces

5.1 Exact vs Approximation

There are two ways to represent and model 3D objects:

1. Exactly
2. Approximately

Overview

Exact

- Wireframe
- Parametric Surface
- Solid Model (CSG, BRep, Implicit Solid Modeling)
- Precise model of object topology
- Mathematically represent all geometry

Pros

Exact

- High precision
- Lots of modeling environments
- Physical properties
- High level control
- Many applications (tool path generation, motion, etc)
- Compact

Approximate

- Facet / Mesh (Surfaces)
- Voxels (Volume Info)
- A discretization of the 3 D object
- Use simple primitives to model topology and geometry

Approximate

- Easy to implement
- Easy to acquire
- Easy to render
- Many algorithms

Cons

Exact

- Complex data structures
- Extensive algorithms
- Many specific nuanced formats
- Hard to acquire data
- Requires translation for rendering

Approximate

- Lossy
- Data structure sizes can get huge
- Easy to break
- Not good for many applications
- Lots of guesswork

5.2 Wireframes

The general idea is to represent the model as the set of its edges. We can describe a cube as:

Vertices	Lines
$A:(0,0,0)$	$A B$
$B:(1,0,0)$	$B C$
$C:(1,1,0)$	$C D$
$D:(0,1,0)$	$D A$
$E:(0,0,1)$	$E F$
$F:(1,0,1)$	$F G$
$G:(1,1,1)$	$G H$
$H:(0,1,1)$	$H E$
	$A E$
	$B F$
	$C G$
	$D H$

The problem is that wire frames are visually ambiguous since there are no surfaces, the inside is hard to tell from the outside. It's also hard to model a shape wire by wire.

5.3 Surface Models

The general idea now is to represent a model as a set of faces and patches. The issue now is getting faces to "line up" nicely and accurately. Which side is "inside" and which is "outside"?

BRep Data Structure : Winged Edge Data Structure that has:

- Vertex
- (x, y, z) point
- n pointers to coincident edges
- Edge
- 2 pointers to end-point vertices
- 2 pointers to adjacent faces
- Pointer to the next edge
- Pointer to the previous edge
- Face
- m pointers to edges

Vertices

V1	(x, y, z)	$E 3$	$E 1$	
V2	(x, y, z)	$E 1$	$E 2$	$E 4$
V3	(x, y, z)	$E 2$	$E 3$	$E 5$
V4	(x, y, z)	$E 4$	$E 5$	

Edges

$\mathbf{E 1}$	$V 1$	$V 2$	$F 1$		$E 2$	$E 3$
E2	$V 2$	$V 3$	$F 1$	$F 2$	$E 3$	$E 1$
E3	$V 3$	$V 1$	$F 1$		$E 1$	$E 2$
E4	$V 2$	$V 4$	$F 2$		$E 5$	$E 2$
E5	$V 3$	$V 3$	$F 2$		$E 2$	$E 4$

Faces

$\mathbf{F 1}$	$E 1$	$E 2$	$E 3$
$\mathbf{F 2}$	$E 2$	$E 4$	$E 5$

5.4 Biparametric Surfaces

Biparametric Surfaces: Generalization of parametric curves with two parameters s and t

Biparametric Patch : (u, v) maps to a 3D point on the patch

$$
F(u, v)=(x, y, z)=(x(u, v), y(u, v), z(u, v))
$$

5.5 Bicubic Surfaces

In 3D, we allow the points in the geometry matrix G to vary in 3D along t :

$$
Q(s, t)=\left[\begin{array}{llll}
G_{1}(t) & G_{2}(t) & G_{3}(t) & G_{4}(t)
\end{array}\right] M S
$$

For a fixed t_{1}, then $Q\left(s, t_{1}\right)$ is a curve. Gradually incrementing t_{1} to t_{2} gives us a new curve. This combination of curves creates a surface. Above, $G_{i}(t)$ are 3D curves.

Each $G_{i}(t)$ is defined as $G_{i}(t)=G_{i} M T$ where:

$$
G_{i}=\left[\begin{array}{llll}
g_{i 1} & g_{i 2} & g_{i 3} & g_{i 4}
\end{array}\right]
$$

We then transpose $G_{i}(t)$:

$$
G_{i}(t)=T^{T} M^{T} G_{i}^{T}
$$

Then substitute $G_{i}(t)$ into $Q(s)$ gives:

$$
Q(s, t)=T^{T} M^{T}\left[\begin{array}{llll}
g_{11} & g_{21} & g_{31} & g_{41} \\
g_{12} & g_{22} & g_{32} & g_{42} \\
g_{13} & g_{23} & g_{33} & g_{43} \\
g_{14} & g_{24} & g_{34} & g_{44}
\end{array}\right] M S
$$

$Q(s, t)$ can be written over the $0 \leq s, t \leq 1$ interval as:

$$
\begin{aligned}
& x(s, t)=T^{T} M^{T} G_{x} M S \\
& y(s, t)=T^{T} M^{T} G_{y} M S \\
& z(s, t)=T^{T} M^{T} G_{z} M S
\end{aligned}
$$

5.6 Bicubic Bézier Patches

Also called a Bézier Surface. Defined as:

$$
\begin{aligned}
& x(s, t)=T^{T} M_{B}^{T} G_{B_{x}} M_{B} S \\
& y(s, t)=T^{T} M_{B}^{T} G_{B_{y}} M_{B} S \\
& z(s, t)=T^{T} M_{B}^{T} G_{i} B_{z} M_{B} S
\end{aligned}
$$

Given a data array $P=\left[p_{i j}\right]$:

$$
\vec{p}(u, v)=\sum_{i=0}^{3} \sum_{j=0}^{3} b_{i}(u) b_{j}(v) \vec{p}_{i j}=u^{T} M_{B} P M_{B}^{T} v
$$

The cubic Bézier blending function is defined as:

$$
b(u)=\left\{\begin{array}{l}
(1-u)^{3} \\
3 u(1-u)^{2} \\
3 u^{2}(1-u) \\
u^{3}
\end{array}\right.
$$

Features of the Bicubic Bézier Patch include:

- Interpolates 4 corner control points
- 4 edges are Bézier curves
- Has convex hull property

Faceting : Defining triangle surfacs that tessellate the patch
The process is:

- Nested loops for u and v
- For each (u, v) from $(0,0)$ through ($n u-1, n v-1$)
- Calculate 3D point on patch
- Keep track of linear index
- Define triangles
triangle $[k]=(\operatorname{vert}[i, j]$, vert $[i+1, j], \operatorname{vert}[i+1, j+1])$
triangle $[k]=(\operatorname{vert}[i, j], \operatorname{vert}[i+1, j+1], \operatorname{vert}[i, j+1])$

5.6.1 Surface Normals

Normals are used for:

- Shading
- Interference detection in robotics
- Calculating offsets in numeric controlled machining

The general process is as follow:

1. Compute s tangent vector
2. Compute t tangent vector
3. Compute the cross product of s and t

Since s and t are tangent to the surface, their cross product is the normal vector.
First, the s tangent vector:

$$
\begin{aligned}
Q(s, t) & =T^{T} * M^{T} * G * M * S \\
\frac{\delta}{\delta s} Q(s, t) & =\frac{\delta}{\delta s}\left(T^{T} * M^{T} * G * M * S\right) \\
& =T^{T} * M^{T} * G * M * \frac{\delta}{\delta s}(S) \\
& =T^{T} * M^{T} * G * M *\left[\begin{array}{llll}
3 s^{2} & 2 s & 1 & 0
\end{array}\right]
\end{aligned}
$$

Then the t tangent vector:

$$
\begin{aligned}
Q(s, t) & =T^{T} * M^{T} * G * M * S \\
\frac{\delta}{\delta t} Q(s, t) & =\frac{\delta}{\delta t}\left(T^{T} * M^{T} * G * M * S\right) \\
& =\frac{\delta}{\delta t}\left(T^{T}\right) * M^{T} * G * M * S \\
& =\left[\begin{array}{llll}
3 t^{2} & 2 t & 1 & 0
\end{array}\right]^{T} * M^{T} * G * M * S
\end{aligned}
$$

Then their cross product:

$$
\begin{align*}
Q_{N}(s, t) & =\frac{\delta}{\delta s} Q(s, t) \times \frac{\delta}{\delta t} Q(s, t) \tag{1}\\
Q_{N}(s, t) & =\left[\begin{array}{lll}
y_{s} z_{t}-y_{t} z_{s} & z_{s} x_{t}-z_{t} x_{s} & x_{s} y_{t}-x_{t} y_{s}
\end{array}\right] \tag{2}
\end{align*}
$$

5.7 B-Spline Surfaces

We get the following repesentation for B-Spline patches:

$$
\begin{aligned}
& x(s, t)=T^{T} * M_{B s}^{T} * G_{B s_{x}} * M_{B s} * S \\
& y(s, t)=T^{T} * M_{B s}^{T} * G_{B s_{y}} * M_{B s} * S \\
& z(s, t)=T^{T} * M_{B s}^{T} * G_{B s_{z}} * M_{B s} * S
\end{aligned}
$$

5.8 Surfaces of Revolution

Directrix : A planar curve being revolved
Axis of Revolution : The axis the directrix is revolved around, typically the z axis
Surfaces of revolution produce circular cross sections

Directrix : $D(u)=(f(u), 0, g(u))$
Surface : $S(u)=(f(u) \cos \theta, f(u) \sin \theta, g(u)), 0 \leq u \leq 1,0 \leq \theta \leq 2 \pi$
Tangents : Similar process as before:

1. $\frac{\delta}{\delta u} S(u, \theta)=\left(f^{\prime}(u) \cos \theta, f^{\prime}(u) \sin \theta, g^{\prime}(u)\right)$
2. $\frac{\delta}{\delta \theta} S(u, \theta)=(-f(u) \sin \theta, f(u) \cos \theta, 0)$
3. $N(u, \theta)=\frac{\delta}{\delta u} S(u, \theta) \times \frac{\delta}{\delta \theta} S(u, \theta)$

5.9 Drawing Parametic Surfaces

Typically done by going "patch by patch", but there are two main options:

- Render directly from the parametric description
- Approximate with a polygon mesh, then rend the mesh

Direct Rendering : Scan line by line, then pixel by pixel. Issues include:

- How to go from (x, y) "screen space" to point on the 3D patch
- Max and Min y coordinates may not lie on boundaries
- Silhouette edges result from patch bulges
- Need to track silhouettes and boundaries

5.9.1 Object Space Conversion

A type of patch to polygon rendering. The resolution depends on the object space. Three techniques:

- Iterative evaluation
- Uniform subdivision
- Non-uniform subdivision

Plane By Plane Rendering : Scan plane by plane iteratively
Given a patch $x=X(u, v), y=Y(u, v), z=Z(u, v)$, this looks like:

- Find the intersection of the patch with $X Z$ plane producing a planar curve
- Draw the curve using a known algorithm
- Note: When rendering, pixel-by-pizel color values can be computed this way

Uniform Subdivision

1. Cut parameter space into equal parts
2. Find new points on surface
3. Recurse and repeat until desired resolution
4. Split squares into triangles

Non-Uniform Subdivision

1. More facets in areas of high curvature
2. Use change in normals to assess curvature
3. Break patch into subpatches based on curvature changes
4. Split squares into triangles

In Practice:

You need fewer triangles for models further away from the camera

In 1D : It's just piecewise linear subdivision

$$
\begin{aligned}
x_{n} & =\frac{1}{2}\left(x_{l}+x_{r}\right) \\
y_{n} & =\frac{1}{2}\left(y_{l}+y_{r}\right)
\end{aligned}
$$

1D Four Points:

$$
p_{2 i+1, j+1}=\frac{1}{16}\left(-p_{i-1, j}+9 p_{i, j}+9 p_{i+1, j}-p_{i+2, j}\right)
$$

5.9.2 Image Space Conversion

A type of patch-polygon rendering. The resolution depends on the pixels and screen. Control the subdivision based on the screen criteria:

- Minimum pixel area : Stop when the patch is 1 pixel
- Screen flatness : Stop when the patch converges to a polygon
- Screen flatness of Silhoette edges : Stop when edge is straight or 1 pixel

5.9.3 Silhouette Rays

An edge is a silhouette edge when the viewing ray is tangent to the point it hits on the surface. Where N is the normal, and L is the line of sight:

$$
N(S) \cdot L=0
$$

6 Clipping

Goal : Only draw lines inside of the window and clip the lines to window boundary

6.1 Scissor Clipping

While scanning and converting the line:

```
if \(x_{\min }<x<x_{\max }\) and \(y_{\text {min }}<y<y_{\max }\) then
    Draw ( \(x, y\) )
    else
        Do Nothing
    end if
```

The problem is this is too slow and we do more work than necessary. It's better to clip lines to window instead of calculating lines outside of the window.

6.2 Cohen-Sutherland Line Clipping

It's easy to know which lines are entirely inside and entirely outside a window. It's harder to figure out the partials.

Given a straight line from $P_{0}=\left(x_{0}, y_{0}\right)$ to $P_{1}=\left(x_{1}, y_{1}\right)$ and a window defined by lines $W T, W R, W B, W L$ we:

- Is the line completely in the window? Draw it
- Is the line completely outside the window? Ignore it
- Does the line intersect the window? Do more work

There's a basic four bit code we get based on the endpoints P_{0} and P_{1}
B_{3} : Point above window $y>W T$
B_{2} : Point below window $y<W B$
B_{1} : Point left of window $x>W R$
B_{0} : Point right of window $x<W L$

So now, computing $\neg\left(P_{0} \vee P_{1}\right)$ will tell us of the line is completely visible. The line is completely outside the window when $P_{0} \wedge P_{1}$.

Using the bits, we find the line $\left(\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)\right)$ that intersects with the window border, then use similar triangles to find the point of intersection:

$$
\begin{gathered}
x_{c}=W L \\
\frac{y_{c}-y_{0}}{y_{1}-y_{0}}=\frac{W L-x_{0}}{x_{1}-x_{0}} \\
y_{c}=\frac{W L-x_{0}}{x_{1}-x_{0}}\left(y_{1}-y_{0}\right)+y_{0}
\end{gathered}
$$

Then, replace $\left(x_{0}, y_{0}\right)$ with $\left(x_{c}, y_{c}\right)$, recompute the codes and continue until all lines are inside the window.

6.3 Cyrus Beck Technique

Recall a parametric line P with point on it's line t where $0 \leq t \leq 1$ and $P(0)=P_{0}$ and $P(1)=P_{1}$:

$$
P(t)=P_{0}+t\left(P_{1}-P_{0}\right)=(1-t) P_{0}+t P_{1}
$$

We can intersect two edges $\left(P_{0}, P_{1}\right)$ and $\left(P_{2}, P_{3}\right)$ with the following:

$$
\begin{aligned}
E_{a} & =P_{0}+t_{a}\left(P_{1}-P_{0}\right) \\
E_{b} & =P_{2}+t_{b}\left(P_{3}-P_{2}\right) \\
D_{a} & \equiv P_{1}-P_{0} \\
D_{b} & \equiv P_{3}-P_{2}
\end{aligned}
$$

They intersect when:

$$
P_{0}+t_{a} D_{a}=P_{2}+t_{b} D_{b}
$$

Giving us:

$$
\begin{aligned}
x_{0}+d x_{0} t_{a} & =x_{2}+d x_{2} t_{b} \\
y_{0}+d y_{0} t_{a} & =y_{2}+d y_{2} t_{b}
\end{aligned}
$$

We can now solve for t_{a} and t_{b} :

$$
\begin{aligned}
t_{a} & =\frac{d y_{2}\left(x_{0}-x_{2}\right)+d x_{2}\left(y_{2}-y_{0}\right)}{d y_{0} d x_{2}-d x_{0} d y_{2}} \\
t_{b} & =\frac{d y_{0}\left(x_{2}-x_{0}\right)+d x_{0}\left(y_{0}-y_{2}\right)}{d y_{2} d x_{0}-d x_{2} d y_{0}}
\end{aligned}
$$

If the denominator is 0 , the lines are parallel. If $0 \leq t_{a}, t_{b} \leq 1$, the edges intersect.
Goal : Clip lines against convex polygons
Line : $P(t)=P_{0}+t\left(P_{1}-P_{0}\right)$
Point on Edge : $P_{E_{i}}$
Normal to Edge i : N_{i}
Displacement : $D=\left(P_{1}-P_{0}\right)$
Note: Make sure D isn't 0 and the lines aren't parallel

$$
\begin{aligned}
& 0=N_{i}\left[P(t)-P_{E_{i}}\right] \\
& 0=N_{i}\left[P_{0}+t\left(P_{1}-P_{0}\right)-P_{E_{i}}\right] \\
& 0=N_{i}\left[P_{0}-P_{E_{i}}\right]+N_{i} t\left(P_{1}-P_{0}\right)
\end{aligned}
$$

The calculate t :

$$
t=\frac{-N_{i}\left[P_{0}-P_{E_{i}}\right]}{N_{i} D}
$$

For the window edges, N_{i} is easy:

- WT : $(0,1)$
- WB: $(0,-1)$
- $W L:(-1,0)$
- $W R:(1,0)$

For arbitrary edges:

$$
\begin{aligned}
E & =\frac{V_{1}-V_{0}}{\left|V_{1}-V_{0}\right|} & & \text { Calculate edge direction } \\
N_{x} & =E_{y} & & \text { Rotate }-90^{\circ} \\
N_{y} & =-E_{x} & & \text { Rotate }-90^{\circ}
\end{aligned}
$$

Then to calculate the line segment:

1. Find intersection points between line and every window edge
2. Classify points as entering $(P E)$ or leaving $(P L)$

- $P E$ if angle $P_{0} P_{1}$ and N_{i} is greater than 90°
- $P L$ otherwise

3. $T_{e}=$ maxt $_{e}$
4. $T_{l}=$ maxt $_{l}$
5. Discard if $T_{e}>T_{l}$
6. If $T_{e}<0$ then $T_{e}=0$
7. If $T_{l}>1$ then $T_{l}=1$
8. Use T_{e}, T_{l} to compute intersection coordinates $\left(x_{e}, y_{e}\right)$ and $\left(x_{l}, y_{l}\right)$

6.4 Polygon Clipping

Polygon : Ordered set of vertices, usually counter clockwise. Two consecutive vertices define an edge. Left side of an edge is inside while the right is the outside. Last vertex is implicitly connected to the first.

The edges of polygon need to be tested against the clipping rectangle. This creates a few cases we should be prepared to handle:

- May need to discard edges
- May need to add new edges
- May need to divide edges
- One polygon may become many

6.5 Sutherland-Hodgman Algorithm

Basic Idea : Clip single polygon using a single infinite clip edge 4 times

Given the vertices of the polygon $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and a single infinite clip edge with inside and outside information, we can:

```
function SutherlandHodgEman( }P,W\mathrm{ )
    for }\forall\mathrm{ polygons }\mp@subsup{P}{i}{}\inP\mathrm{ do
        for }\forall\mathrm{ clipping edges }\mp@subsup{E}{c}{}\inW\mathrm{ do
            for }\forall\mathrm{ edges }\mp@subsup{E}{p}{}in\mp@subsup{P}{i}{}\mathrm{ do
            // Check clipping cases
            if Case 1 Applies then
                    Output vi+1
            else if Case 2 Applies then
                    Output intersection point
                        else if Case 3 Applies then
                            No output
                        else if Case 4 Applies then
                            Output intersection point and v}\mp@subsup{v}{i+1}{
            end if
            end for
        end for
    end for
end function
```

Then a visualization of the four clipping cases:

This produces the following input and output. Note the edges (X, Y) and (Z, W) exist. We have an issue where instead of two convex polygons created, we have one concave polygon.

6.6 Weiler-Atherton Algorithm

Given polygons A and B as linked lists, Weiler-Atherton starts with the following. This starting point is used for any of the sub functions of the algorithm.

1. Find all the edge intersections and
2. Place into another list. Insert as "intersection" nodes
3. Determine inside and outside nodes

The intersection special cases are:

- The edges are parallel? Ignore
- The intersection is a vertex and the vertex should be replaced with an intersection node
- V_{a} is on E_{b}
- E_{a} runs through E_{a}

From here, there are two cases, union and intersection.

6.6.1 Intersection

1. Start at intersection node
2. If it's connected to an "inside" vertex, go there
3. Else go to an intersection point
4. If neither stop
5. Traverse linked list
6. At each intersection point switch to other polygon and remove intersection point from list
7. Repeat until returning to starting intersection point
8. If the intersection list isn't empty, pick another point
9. All visited vertices and nodes define the overlapping polygon

The below image is traversed in the order: $\left\{V_{1} \cdot V_{7} \cdot P_{0}\right\}$ and $\left\{P_{3}, V_{5} \cdot P_{2}\right\}$

Special Cases : When the polygons don't intersect

- If one is inside the other, return the inner polygon
- Otherwise, return none

6.6.2 Union

1. Find an "outside" vertex
2. Traverse linked list
3. At each intersection, switch to the other polygon
4. Repeat until back at start
5. If there are still unvisited "outside" edges, repeat

The below image is traversed in the order: $\left\{V_{0} \cdot V_{1} \cdot V_{2}, V_{3}, P_{0}, V_{8}, V_{4}, P_{3}, V_{0}\right\}$ and $\left\{V_{6}, P_{1} \cdot P_{2}\right\}$

Special Cases : When the polygons don't intersect

- If one is inside the other, return the outer polygon
- Otherwise, return both

```
function UnionTwoSimpleConvexPolygons \((A, B)\)
    \(P 0:=A\)
    \(P 1:=B\)
    \(v_{i}:=\) a vertex from \(A\) outside of \(B\)
    Output \(v_{i}\)
    \(E_{c}:=\left(v_{i}, v_{i+1}\right)\)
    while (||Output \(\|<2\) ) or (Output.first \(\neq\) Output.last) do
            Intersect \(E_{c}\) with all edges in \(P 1\)
            // There can be at most 2 intersections
            if Intersections \(=0\) then
                Output \(v_{i+1}\)
                \(E_{c}:=E_{c}\).next
            else
                Output intersection with lowest \(t\) value along \(E_{c}\)
                Output last vertex of \(P 1\) 's intersected edge
                \(E_{c}:=P 1\).next
                \(T:=P 1\)
                \(T:=P 1\)
                \(P 1:=P 0\)
                \(P 0:=T\)
        end if
    end while
end function
```

To find if a point is inside a polygon?
Jordan Curve Theorem : A point p is inside polygon P if for any ray shot from p to the outside of P, there are an odd number of edges crossed.

```
function InteriorPoint? \((p, P)\)
    \(p^{\prime}:=\) known point outside \(P\)
    \(p p^{\prime}:=\) the edge between \(p\) and \(p^{\prime}\)
    Intersect \(p p^{\prime}\) with all polygon edges and count intersections
    if count is even then
        FALSE
    else
        True
    end if
end function
```


7 Filling

Two main parts:

1. Which pixels do I fill?
2. What values do I fill them with?

Coherence : Make everything go together, but in what way?

- Spatial : Pixels are the same from pixel to pixel and scan-line to scan-line
- Span : All pixels on a span get the same value
- Scan-Line : Consecutive scan lines are the same
- Edge : Pixels are the same along edges

7.1 Rectangles

It's an easy algorithm:

```
function FillRectangle \((R)\)
    for \(x_{i}:=x_{\min } \rightarrow x_{\max }\) do
            for \(y_{i}:=y_{\min } \rightarrow y_{\max }\) do
            Color \(\left(x_{i}, y_{i}\right)\)
        end for
    end for
end function
```

What happens if two rectangles share an edge? What color do we color the boundary pixels? So as a general rule of thumb only color pixels in $\left[x_{\min }, x_{\max }\right)$ and $\left[y_{\min }, y_{\max }\right.$).

7.2 Polygons

We can take a similar approach where we take a scan-line through each height y and fill the interior x s. Two issues though. First, notice below the intersections a and d are integer values and fall perfectly on the line. The intersections b and c do not fall precisely on the line. Second, shooting off this, which pixels are interior?

Option 1 : Midpoint Algorithm
Option 2: Strict Inside
Use the midpoint algorithm on each edge, fill in pixels Find intersections of scan line with edges, sort interbetween the found extrema points sections by increasing x, fill pixels based on a parity Issue: The midpoint algorithm has no sense of in and bit B_{p}. out, so many extrema pixels are outside the polygon. B_{p} is initially even (off). At each intersection, invert the bit. Draw when odd, don't draw when even.

Issue: What do we do with fractional x ? What about intersections at vertices? Shared vertices? Vertices that define a horizontal edge?

In option 2, we come across an issue where vertices will be counted twice, and flip the parity bit B_{p} twice. We need to account for the following by comparing the y value with the y value of neighboring vertices:

- Both neighboring vertices on the same side of the scan line? Ignore
- Both neighboring vertices on different sides of the scan line? Count Once

Then for filling horizontal edges, how do we handle this?

1. Apply open and closed status to vertices to other edges

- $y_{\min }$ is closed, $y_{\max }$ is open

2. On $A B, A$ is at $y_{\text {min }}$ for $J A$. $A B$ does not contribute. B_{p} is odd and draws $A B$
3. Edge $B C$ has $y_{\text {min }}$ at B, but $A B$ does not contribute. B_{p} becomes even and drawing stops
4. Start drawing at $I J . B_{p}$ is odd
5. C is $y_{\text {max }}$ for $B C . B_{p}$ stays odd
6. D is $y_{\text {min }}$ for $D E . B_{p}$ becomes even. Stop drawing and ignore $C D$

7. I is $y_{\max }$ for $I J . B_{p}$ is even. No drawing occurs
8. B_{p} still even, ignore $I H$
9. H is $y_{\text {min }}$ for $G H . B_{p}$ becomes off. Draw $F E$
10. Ignore $G F$
```
function FillPolygon \((P)\)
    for \(\forall\) edges \(E_{i} \in P . E\) do
        if \(x_{\text {min }_{i}}==x_{\text {max }_{i}}\) then
                Ignore
        end if
        if \(y_{\max }\) is on a scanline then
                Ignore
        end if
        if \(y_{\text {min }} \leq y_{s} \leq y_{\max }\) then
            Add \(E_{i}\) to scan line \(y_{s}\) 's edge list
        end if
    end for
    for \(\forall\) scanline \(y_{s} \in\left[y_{\text {min }}, y_{\max }\right]\) do
        Calculate intersections with edges on list
        Sort intersections by \(x\)
        Perform parity bit scan line filling
        Check intersection special cases
    end for
    Clear scan lines edge list
end function
```

How do we handle slivers though? Places where the polygon is thinner than the width of a pixel?
It says anti-aliasing but doesn't describe it!!!

7.3 Curved Objects

It's hard to do this in a general case, but circles and ellipses are easy.
Use the midpoint algorithm to generate boundary points. Fill in with horizontal pixel spans, then use symmetry.

7.4 Boundary Fill Algorithm

Start with an internal point (x, y), color it, check neighbors for filled or border color. Recurse on valid neighbors
However, it may make mistakes if parts of the space were already filled with the fill color. It also requires a huge stack size to keep track of all the recursion.


```
function BoundaryFill ( \(x, y\), fill, bound)
        if \(\operatorname{Color}(x, y) \neq\) fill and \(\operatorname{Color}(x, y) \neq\) bound then
            \(\operatorname{Color}(x, y):=\) fill
            BoundaryFill \((x+1, y\), fill, bound \()\)
            BoundaryFill \((x, y+1\), fill, bound)
            BoundaryFill \((x-1, y\), fill, bound)
            BoundaryFill \((x, y-1\), fill, bound)
        end if
    end function
```


8 Color

8.1 Vocab

Hue : The flavor of color we see. Red, green, blue, etc. Based on the dominant wavelengths
Saturation : How much of the flavor we see. Based on excitation purity
Lightness : Self reflecting objects. Based on luminance
Brightness : Self luminous objects. Based on luminance

8.2 Physics and Eyes

Electromagnetic spectrum
wavelengths
what do we percieve?
highest degree of sensitivity is also where sun is

8.3 Intensity

Achromatic : Light without color. Defined in terms of three types of energy, intensity, luminance, and brightness

If we have a limited number of shades, how do we decide how to distribute them?

Bad Idea 1:
128 levels between 0.0 and 0.9
128 levels between 0.9 and 1.0 This creates discontinuities at 0.9 and an uneven dis- tives, not absolutes (like a sith would). The intensity tribution of samples

This isn't how the human eye works. It deals in rela-

Bad Idea 2:

Distribute them evenly change between 0.10 and 0.11 looks like the change from 0.50 and 0.55 since they're both 10%.

Good Idea : Start with I_{0}, build up to $I_{255}=1$

$$
\begin{aligned}
I_{0} & =\text { Given } \\
I_{1} & =r I_{0} \\
I_{2} & =r I_{1}=r^{2} I_{0} \\
\ldots & =\ldots \\
I_{255} & =r^{255} I_{0}=1 \\
r & =\left(\frac{1}{I_{0}}\right)^{1 / 255}=I_{0}^{-1 / 255} \\
r^{j} & =I_{0}^{-j / 255} \\
I_{j} & =r^{j} I_{0}=I_{0}^{(1-j / 255)}=I_{0}^{(255-j) / 255} \\
r & =\left(\frac{1}{I_{0}}\right)^{1 / n} \\
I_{j} & =r^{j} I_{0}=I_{0}^{(n-j) / n}
\end{aligned}
$$

When selecting intensities, take into account the dynamic range of the device and choose a minimum intensity such that its $\left[\frac{1}{500}, \frac{1}{200}\right]$ of the maximum.

Gamma Correction : Adjusting intensities to compensate for a device. This requires a look up table

$$
\begin{aligned}
& I=v^{\gamma} \\
& \gamma=2 \rightarrow 2.5
\end{aligned}
$$

But how many intensities are enough? The human eye cannot see changes $<1 \%$:

$$
\begin{aligned}
1.01 & =\left(\frac{1}{I_{0}}\right)^{1 / n} \\
n & =\log _{1.01}\left(\frac{1}{I_{0}}\right) \\
I_{0} & =\frac{1}{200} \\
n & =532
\end{aligned}
$$

8.4 Physics Background

Tristimulus Theory : The human retina has three color sensors called cones. These cones are tuned to red, green, and blue wavelengths.

Luminous Efficiency Function : The eye's response to light of constant luminance as the dominant wavelength is varied

Eyes can distinquish 100,000 s of colors side by side. When the colors only differ in hue, colors are only distinguishable when the wavelength difference is [$2 \mathrm{~nm}, 10 \mathrm{~nm}$], but most within 4 nm . This means 128 fully saturated hues can be distinguished. Less saturation makes us less sensitive to changes in hues. We are more sensitive at spectrum extremes to changes in saturation. There are about 23 distinguishable saturation grades.

8.5 Color Models

8.5.1 RGB

RGB is an additive model that defines colors in weighted sums of red, green, and blue. Some colors may need values less than 0 to match the wavelengths, so some colors cannot be represented this way.

Primary colors are obviously red, green, and blue, which gives us the secondary colors:

- yellow $=$ red + green
- cyan $=$ green + blue
- magenta $=$ red + blue
- white $=$ red + green + blue
- black $=$ none

RGB is primarily used in monitors and TVs and things that emit light

8.5.2 CMY(K)

On the flipside, CMYK describes a hard copy color output. Since it's mostly used in printing ink, the colors are reflected light. This makes CMYK a subtractive color model. For example cyan ink absorbs red light and reflects green and blue. This gives the following secondary colors:

- blue $=$ cyan + magenta
- red $=$ magenta + yellow
- green $=$ cyan + yellow
- black $($ theory $)=$ cyan + magenta + yellow
- In practice, black is it's own ink instead of wasting and mixing all three
- white $=$ no ink

8.5.3 XYZ

This isn't actually real colors here. It's a standard defined by the International Commission on Illumination (CIE) in 1931 to avoid negative weights.

$$
\begin{aligned}
X & =\int P(\lambda) \overline{x_{\lambda}} d \lambda \\
Y & =\int P(\lambda) \overline{y_{\lambda}} d \lambda \\
Z & =\int P(\lambda) \overline{z_{\lambda}} d \lambda
\end{aligned}
$$

We can create a cone of visible colors in CIE space as shown on the $X+Y+Z=1$ plane. Since there is constant luminance, it only depends on wavelength and saturation.

We can plot colors on this $X+Y+Z=1$ plane and normalize by brightness to get the CIE chromaticity diagram

$$
\begin{aligned}
X & =\frac{X}{X+Y+Z} \\
Y & =\frac{Y}{X+Y+Z} \\
Z & =\frac{Z}{X+Y+Z}
\end{aligned}
$$

To use this diagram:

- C is "white" and close to $x=y=z=\frac{1}{3}$
- E and F can be mixed to produce any color along the line $E F$
- Dominant wavelength of B is where the line from C through B meets the spectrum (D)
- $\frac{B C}{D C}$ gives the saturation
- A and B are complementary colors and combine to form white light
- Colors inside $i j k$ are linear combinations of i, j, and k

8.5.4 YIQ

This one was developed by the National Television System Committeee (NTSC)

$$
\left[\begin{array}{c}
Y \\
I \\
Q
\end{array}\right]=\left[\begin{array}{ccc}
0.299 & 0.587 & 0.114 \\
0.596 & -0.275 & -0.321 \\
0.212 & -0.528 & 0.311
\end{array}\right]\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{G} \\
\mathbf{B}
\end{array}\right]
$$

Y is the same as the XYZ model and represents brightness. It uses 4 MHz of bandwidth. This is the only signal black and white TVs use.
I contains the orange-cyan hue information (skin tones) and uses about 1.5 MHz of bandwidth.
Q contains the green-magenta hue information. It also uses about 1.5 MHz of bandwidth.

8.5.5 $\mathrm{HS}[\mathrm{B}-\mathrm{V}]$ and HSL

Both use a relationship of tints, shades, and tones
Tints : Mixture of a color with white
Shades : Mixture of a color with black
Tones : Mixture of a color with white and black

HS[B-V] : Hue, Saturation, Brightness/Value
HS [B-V] : Hue, Saturation, Lightness
Hue is the actual color measured in degrees around the Hue is defned the same as in HSB with complimentary cone

- $\operatorname{red}=0=360$
- yellow $=60$
- green $=120$
- ...

Saturation is the purity of the color, measured in percent from the center of the cone. 0% is white and hue is meaningless. 100% will give a pure shade of the color.
Brightness is also measured in percent. It's measured from the tip of the cone. At 0% brightness, neither hue nor saturation matter. At 100% bright, we have a pure tint of the color.

colors 180 degrees apart.
Saturation once again the same as the HSB model with the percentage from the center.
Lightness is now a gray scale accross the axis from 0 , pure white, to 1 , pure black. Pure hues now lie where $L=0.5$.
It's like we took the HSB model, duplicated it and changed the black to white, then flipped it over and combined the two

9 Solid Modeling

Now, we're gonna introduce a mathematical theory of a solid shape. This theory includes the following components:

- A domain of objects
- Each object has a clearly defined inside and outside
- A set of operations on the domain
- Unambigious, accurate, unique, compact, and efficient representation

Solids : A set of points defined as interiors and boundaries
Boundary Points : Points where the distance to the object and it's complement is zero
Interior Points : All other points in the set
Closure : Union of interior and boundary points (another word for solid)

By performing these operations on 3D objects, we can also creat "non-3D objects" or objects with nonuniform dimensions. Objects need to be regularized.

Regularization : Taking the closure of the interior

Another example:

9.1 Constructive Solid Geometry (CSG)

CSG : A tree structure combining primitives via regularized operations
It can also be represented as a topologically sorted DAG

Issues:

- Non Uniqueness : More than one way to build the same model
- Primitive Choice : Minor changes in the primitives can drastically change a model
- Simple Models : How would we sculpt surfaces? or deform them?

Benefits:

- Found in basically every CAD system
- Elegant, conceptually and algorithmically appealing
- Good for:
- Rendering
- Ray Tracing
- Simulation
- BRL CAD

Then to evaluate points on the surface of a CSG:

1. Compute points on the surfaces of the primitives
2. Test if points will be on the surface of the evaluated CSG model
3. Use rules based on the inside outside status of the points
4. Display valid points

Rules:

$\mathbf{A} \cup \mathbf{B}$	$A_{\text {boundary }} \wedge\left(\neg B_{\text {interior }}\right)$ $B_{\text {boundary }} \wedge\left(\neg A_{\text {interior }}\right)$
$\mathbf{A} \cap \mathbf{B}$	$A_{\text {boundary }} \wedge\left(B_{\text {interior }} \vee B_{\text {boundary }}\right)$ $B_{\text {boundary }} \wedge\left(A_{\text {interior }} \vee A_{\text {boundary }}\right)$
\mathbf{A} / \mathbf{B}	$A_{\text {boundary }} \wedge\left(\neg B_{\text {interior }}\right)$ $B_{\text {boundary }} \wedge\left(A_{\text {interior }} \vee A_{\text {boundary }}\right)$
\mathbf{B} / \mathbf{A}	$A_{\text {boundary }} \wedge\left(B_{\text {interior }} \vee B_{\text {boundary }}\right)$ $B_{\text {boundary }} \wedge\left(\neg A_{\text {interior }}\right)$

10 3D Viewing

10.1 Projection

Similar to clipping 2D objects to fit a window, we can't display 3 D objects entirely on a screen. How do we project a 3D object onto a 2 D plane to display it.

The general process for 3D viewing is as follows:

1. Clip the 3D world coordinates and output primitves against the view volume
2. Project the clipped world coordinates onto the projection plane
3. Transform the projection plane into the viewpoint 2 D coordinates for displaying

10.1.1 Planar Geometric Projections

Perspective Projection

Parallel Projection

Similar to a photograph, there's a single viewing loca- The viewing location is at ∞ and it's good for capturtion that rays intersect with ing shape and dimensions.

10.2 Perspective Projections

Vanishing Point : The point at which all viewing rays converge to. These lines are not parallel to the projection plane

Projection plane normal

In addition to a single perpespective point, we can cut two axis at the same time with two vanishing points.

Now how do we actually compute this?
Given point P, we can project it onto a plane as point P_{P} using similar triangles.

Assuming that the projection normal is the z-axis:
x Direction Ratio : $\frac{z}{d}=\frac{x}{x_{p}}$
y Direction Ratio : $\frac{z}{d}=\frac{y}{y b p}$

$$
\begin{aligned}
x_{p} & =\frac{x}{z / d} \\
y_{p} & =\frac{y}{z / d} \\
M_{p} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{1}{d} & 0
\end{array}\right]
\end{aligned}
$$

10.3 Parallel Projections

Orthographic Projections : Projection direction vector and projection plane normal are the same vectors
These are primarily used for engineer diagrams. These are good for keeping the dimensions of a model and faces of a model.

There are three 3 axonometric orthogonal projections for each x, y, and z axis. There are 8 isometric projections for each octant where the angles to each axis are equal.

$$
M_{o r t}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Oblique Projections : Projection direction vector and projection plane normal are different vectors
This preserves certain angles and distances. These are better for illustrations and movement.
Cavalier : All lines are their true lengths (middle)
Cabinet : Receding lines are shorted by one-half of their true length to approximate perspective foreshortening (right)

10.4 Scanline Rendering

Ray Tracing : Cast a ray for every pixel and see what geometry it intersects
Rasterization : Examine every triangle and see which pixels it covers
When choosing the color of the pixel to fill, we have options:

When using scanline rendering for rasterization, the process is exactly the same for 2D objects and finding the pixels of best match based on vertices.

Supersamping : Using the scanline algorithm a bunch of times to get an average picture

10.5 Back Face Culling

Since drawing all these triangles can get heavy and sometimes, not all of them are necessary, we use back-face culling to cut down on unnecessary shapes.

Assumptions for running this process:

- Object approximated as closed polyhedron
- Polyhedron interior is not exposed by the front cutting plane
- The eye pint is not inside the object
- Right hand vertex ordering defines a normal outside

Recall the normal N of a triangle $\left\{p_{0}, p_{1} \cdot p_{2}\right\}$ is:

$$
N=\frac{\left(p_{1}-p_{0}\right)\left(p_{2}-p_{0}\right)}{\left\|\left(p_{1}-p_{0}\right)\left(p_{2}-p_{0}\right)\right\|}
$$

Then, the process goes as follows:

```
function BackFaceCulling
    Perform canonical transformation
    Examine the normal to the face \(N_{k}=\left(x_{k}, y_{k}, z_{k}\right)\)
    // This is the only test necessary for single convex polyhedrons
    // More general cases compare \(N_{k} \circ V\)
    if \(z_{k}>=0\) then
            Draw the face
    else
            Face is a Back-Face, do not draw
    end if
end function
```


10.6 Z-Buffering

Z buffering, also called depth buffering, is a visible surface detection algorith. It's very simple, assuming we have the polygons rasterized pixels. We just walk through the pixels, and draw them if they're in front of the pixel already on the screen.


```
function ZBUFFER
        for \(y:=0 \rightarrow Y M A X\) do
            for \(x:=0 \rightarrow X M A X\) do
                    \(F[x][y]:=B A C K G R O U N D_{C} O L O R\)
                    \(Z[x][y]:=Z M I N\)
        end for
    end for
    for \(\forall\) polygons \(P_{i}\) do
        for \(\forall\) pixels \(p_{i} \in P_{i}\) do
            \(p_{z}:=z\) value of \(p_{i}\)
            if \(p_{z}>Z[x][y]\) then // New pixel is closer
                \(F[x][y]:=\operatorname{Color}\left(p_{i}\right)\)
                \(Z[x][y]:=p_{z}\)
            end if
        end for
    end for
end function
```

```
function ZBuFfer-FrontBackClipping
    for \(y:=0 \rightarrow Y M A X\) do
        for \(x:=0 \rightarrow X M A X\) do
            \(F[x][y]:=B A C K G R O U N D_{C} O L O R\)
            \(Z[x][y]:=-1\)
        end for
    end for
    for \(\forall\) polygons \(P_{i}\) do
        for \(\forall\) pixels \(p_{i} \in P_{i}\) do
            \(p_{z}:=z\) value of \(p_{i}\)
            if \(p_{z}>Z[x][y]\) and \(p_{z}<F R O N T\) then
                // New pixel is closer and behind front plane
                \(F[x][y]:=\operatorname{Color}\left(p_{i}\right)\)
                \(Z[x][y]:=p_{z}\)
            end if
        end for
    end for
end function
```

Z Interpolation : Simplify the calcuation of z by exploiting the fact a triangle is planar. Two parts:

1. Interpolate z values along the edges
2. Interpolate z values along the scan line

Three Special Cases:

- Horizontal edge
- Degenerate triangle
- Single point

10.7 Depth Cueing

Objects that are farther away are darker, objects that are closer are brighter.

$$
\text { Color }^{\prime}=\text { Color } \frac{z-f a r}{n e a r-f a r}
$$

10.8 Ray Tracing

Also called Ray Casting. This determines the visible surface by tracing rays of light from the viewers eye to the objects. This allows for more rendering like reflections and such.

```
function RAYTRACING
    for \(\forall\) scanlines \(s \in S\) do
        for \(\forall\) pixels \(p \in s\) do
            Find a ray from the center of the projections through the pixel
            \(C_{o}:=\) The closest object in the scene
            \(C_{l}:=\) The location of the intersection with the closest object
            for \(\forall\) objects \(o \in O\) do
                if \(o\) is closer than \(C_{o}\) then
                    \(C_{o}:=o\)
                            \(C_{l}:=\) The location of the intersection with \(o\)
                    end if
            end for
            \(\operatorname{Color}(p):=\operatorname{Color}\left(C_{o}\left[C_{l}\right]\right.\)
        end for
    end for
end function
```


To actually compute this, we call the center of project $\left(x_{0}, y_{0}, z_{0}\right)$ and the point on the window $\left(x_{1}, y_{1}, z_{1}\right)$ to get the following from the parametric equation of a line:

$$
\begin{aligned}
& x=x_{0}+t \Delta x \\
& y=y_{0}+t \Delta y \\
& z=z_{0}+t \Delta z
\end{aligned}
$$

Intersection : Sphere

$$
\begin{aligned}
r^{2} & =(x-a)^{2}+(y-b)^{2}+(z-c)^{2} \\
r^{2} & =\left(x_{0}+t \Delta x-a\right)^{2}+\left(y_{0}+t \Delta y-b\right)^{2}+\left(z_{0}+t \Delta z-c\right)^{2} \\
0 & =\left(x_{0}+t \Delta x-a\right)^{2}+\left(y_{0}+t \Delta y-b\right)^{2}+\left(z_{0}+t \Delta z-c\right)^{2}-r^{2} \\
0 & =\left(\Delta x^{2}+\Delta y^{2}+\Delta z^{2}\right) t^{2}+\left(\Delta x\left(x_{0}-a\right)+\Delta y\left(y_{0}-b\right)+\Delta z\left(z_{0}-a\right)\right) 2 t+\left(x_{0}-a\right)^{2}+\left(y_{0}-b\right)^{2}+\left(z_{0}-c\right)^{2}-r^{2}
\end{aligned}
$$

Since the equation (albeit messy) is quadratic in terms of t, we can solve it with the quadratic formula and get the following cases:

- No real roots: No intersections
- One real root: Ray grazes the sphere
- Two real roots: Two points of intersection

Intersection : Polygon

$$
\begin{array}{ll}
0=A x+B y+C z+D & \text { Plane of intersection } \\
t=-\frac{A x_{0}+B y_{0}+C z_{0}+D}{A \Delta x+B \Delta y+C \Delta z} & \text { Substitution }
\end{array}
$$

If the denominator is 0 , the ray is parallel to the plane. Otherwise, project the polygon and point orthographically on the coordinate plane, then perform the point on Polygon test.

The actual ray tracing comes from when there are reflections and shadows and transparencies and refractions to take into account.

To measure refraction:

Snell's Law : $\eta_{i} \sin \theta_{i}=\eta_{t} \sin \theta_{t}$

$$
\begin{aligned}
\eta & =\frac{\eta_{i}}{\eta_{t}} \\
\eta & =\frac{\sin \theta_{i}}{\sin \theta_{t}} \\
m & =\frac{n \cos \theta_{i}-i}{\sin \theta_{i}} \\
\cos \theta_{t} & =\sqrt{1-\sin ^{2} \theta_{t}} \\
\cos \theta_{t} & =\sqrt{1-\eta^{2} \sin ^{2} \theta_{t}} \\
t & =m \sin \theta_{t}-n \cos \theta_{t} \\
& =\frac{\sin \theta_{t}}{\sin \theta_{i}}\left(n \cos \theta_{i}-i\right)-n \cos \theta_{t} \\
& =n\left(\eta \cos \theta_{t}-\cos \theta_{t}\right)-i \eta \\
t & =n\left(n i \eta-\sqrt{1-\eta^{2}\left(1-(n i)^{2}\right)}\right)-i \eta
\end{aligned}
$$

