
CS-536 : Notes

Charlie Stuart : src322

Fall 2021

Note: Section numbers are completely made up based on my brain understanding things

Contents

1 Math Review 5

1.1 Vectors, Points, Scalars . 5

1.1.1 Operations . 5

1.2 Matrixes . 8

1.2.1 Operations . 8

1.3 Calculus . 10

1.3.1 Derivatives . 10

1.3.2 Partial Derivatives . 10

1.4 Combinatorics . 11

2 Graphics Basic Vocab 12

3 Curves 13

3.1 Fuctional Representations . 13

3.1.1 Explicit Functions . 13

3.1.2 Implicit Functions . 13

3.1.3 Parametric Functions . 13

3.1.4 Comparisions . 13

3.1.5 Points and Curves . 14

3.1.6 Convex Hulls . 14

1

3.2 Parametric Curves . 15

3.2.1 Mathematical Definition . 15

3.3 Continuity . 16

3.4 Bézier Curves . 18

3.4.1 Bernstein Polynomials . 18

3.4.2 General Form . 19

3.4.3 Properties . 19

3.4.4 Issues . 19

3.5 Hermite Curves . 20

3.5.1 Algebraic Form . 20

3.5.2 Blending/Basis Curves . 21

3.5.3 Matrix Form . 22

3.5.4 Hermite and Bézier . 23

3.6 Catmull-Rom Splines . 24

3.6.1 Tension . 24

3.7 B-Splines . 25

3.7.1 Knots . 25

3.7.2 Drawing a Line . 26

3.7.3 Properties . 27

3.8 NURBS . 28

3.8.1 Weights . 29

4 Drawing Parametic Curves 31

4.1 de Casteljau Algorithm . 31

4.1.1 Linear Interpolations . 31

4.1.2 Drawing a Line . 31

4.1.3 Observations . 32

4.2 Subdivisions . 32

4.2.1 Recursive Subdivisions . 33

4.3 Bézier Curves . 34

2

4.4 NURB Conic-Sections . 35

4.5 Knot Insertion . 36

4.5.1 Properties . 37

4.6 de Boor Algorithm . 37

4.7 Oslo Algorithm . 39

4.8 Barycentric Coordinates . 39

5 Surfaces 41

5.1 Exact vs Approximation . 41

5.2 Wireframes . 42

5.3 Surface Models . 42

5.4 Biparametric Surfaces . 43

5.5 Bicubic Surfaces . 44

5.6 Bicubic Bézier Patches . 45

5.6.1 Surface Normals . 46

5.7 B-Spline Surfaces . 48

5.8 Surfaces of Revolution . 49

5.9 Drawing Parametic Surfaces . 50

5.9.1 Object Space Conversion . 50

5.9.2 Image Space Conversion . 51

5.9.3 Silhouette Rays . 52

6 Clipping 53

6.1 Scissor Clipping . 53

6.2 Cohen-Sutherland Line Clipping . 53

6.3 Cyrus Beck Technique . 54

6.4 Polygon Clipping . 56

6.5 Sutherland-Hodgman Algorithm . 57

6.6 Weiler-Atherton Algorithm . 58

6.6.1 Intersection . 58

6.6.2 Union . 59

3

7 Filling 62

7.1 Rectangles . 62

7.2 Polygons . 62

7.3 Curved Objects . 64

7.4 Boundary Fill Algorithm . 65

8 Color 66

8.1 Vocab . 66

8.2 Physics and Eyes . 66

8.3 Intensity . 66

8.4 Physics Background . 67

8.5 Color Models . 68

8.5.1 RGB . 68

8.5.2 CMY(K) . 69

8.5.3 XYZ . 69

8.5.4 YIQ . 71

8.5.5 HS[B—V] and HSL . 71

9 Solid Modeling 73

9.1 Constructive Solid Geometry (CSG) . 74

10 3D Viewing 76

10.1 Projection . 76

10.1.1 Planar Geometric Projections . 76

10.2 Perspective Projections . 77

10.3 Parallel Projections . 78

10.4 Scanline Rendering . 79

10.5 Back Face Culling . 80

10.6 Z-Buffering . 81

10.7 Depth Cueing . 82

10.8 Ray Tracing . 82

4

1 Math Review

1.1 Vectors, Points, Scalars

Affine Geometry : I can’t find a sane definition of this, but vector geometry basically

Point : Has 1 value for each dimension, represents a single spot

Vector : An n-tuple of real numbers. Uses v⃗ notation

Scalar : An value use to scale a vector

1.1.1 Operations

Point-Point Difference : Given points p and q, q − p creates a vector v

Point-Vector Difference : Given point p and vector v, p + v and p − v create a point q

Vector-Vector Addition : Given vectors v and u, v + u and v − u create a vector w

Scalar Multiplication : Given a vector v and a scalar s, sv creates a vector w

Linear Combination :

5

Given vectors v1, v2, ..., vn and scalars α1, α2, ..., αn then α1v1 + α2v2 + ... + αnvn is the linear combination
of them.

Affine Combinations :

Given that v1, v2, ..., vn are vectors and ∑n
i αi = 1 then:

α1v1 + α2v2 + ... + αnvn

For Example: R = (1 − α)P + αQ

Dot Product : Given vectors u and v,

u ⋅ v =
n

∑
i=1

uivi

Euclidian Distance : Distance from (x, y) to (0, 0)

√
(x1 − x0)2 + (y1 − y0)2 Distance between two points

√
(x − 0)2 + (y − 0)2 Plug in values

√
x2 + y2

√
x21 + x

2
2 + ... + x

2
n Generalize for n dimensions

√
x1x1 + x2x2 + ... + xnxn√

x⃗ ⋅ x⃗

This calculates the length of x Notation: ∣∣x⃗∣∣

Normalization : Normalizing a vector makes it have length 1 but keeps its direction

v̂ =
v⃗

∣∣v⃗∣∣

Orthogonal : Two vectors are orthogonal if u⃗ ⋅ v⃗ = 0

Angle Between Vectors : Given vectors u and v that share a starting point, the angle θ between them is

θ = cos
−1
û ⋅ v̂

6

Projection of Vectors : Given vector u projected onto vector v

u⃗1 =
u⃗ ⋅ v⃗

v⃗ ⋅ v⃗
v⃗

u⃗2 = u⃗ − u⃗1

7

1.2 Matrixes

Matrix : An n dimensional vector

1.2.1 Operations

Identity : The identity matrix of a square nxn matrix is one where there’s 1 in the diagonal and 0s
everywhere else

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Addition :

Matrix addition is commutative and associative

Given matrices A and B of the same dimensions, then A +B is:

[a00 a01
a10 a11

] + [b00 b01
b10 b11

] = [a00 + b00 a01 + b01
a10 + b10 a11 + b11

]

Scalar Multiplication : Given a matrix A and scalar c, then cA is

c [a00 a01
a10 a11

] = [ca00 ca01
ca10 ca11

]

Matrix Multiplication :

Matrix multiplication is NOT commutative

Given matrices A and B, then each element of C is found with:

cij =
n

∑
s=0

aisbsj

To visualize:

Determinant : Given the following 2x2 matrix:

8

[a b
c d

]

The determinant is ad − bc

Helps us find a vector orthogonal to two other vectors and to determine the plane of a polygon

Cross Product : Given two non-parallel vectors A and B then A × B gives a vector C that is orthogonal
to A and B

A ×B = C = [(aybz − azby), (azbx − axbz), (axby − aybx)]

Matrix Transpose : Swap rows and columns

A = [a b c]

A
T
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
b
c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Some notes:

• (AT)T = A

• (A +B)T = AT +BT

• (cA)T = c(AT)

• (AB)T) = BTAT

Matrix Inverse : Given a square matrix A, if AB = BA = I then B = A
−1

9

1.3 Calculus

1.3.1 Derivatives

f(x) = αxn

df(x)
dx

= αnx
n−1

1.3.2 Partial Derivatives

f(x) = αxnym

∂f(x)
∂x

= αnx
n−1

y
m

10

1.4 Combinatorics

Combinations : (x
y
), x choose y

(xy) =
x!

y!(x − y)!

11

2 Graphics Basic Vocab

Geometric Modeling : Mathematics and algorithms that define 2D and 3D geometric objects

Lighting and Shading : Math, physics, and algorithms that specify how light interacts with matter‘

Rendering : Algorithms that take geometry, lighting, shading, and viewing information and generate an
image

Visualization : Techniques for visually communicating and exploring scientific, medical, or abstract data

Perception : Study of how humans perceive light and information

Animation : Algorithms for making models change over time

Simulation : Using physics to make models move

Raster 2D Graphics : Pixels

• X11 bitmap (XBM), X11 pixmap (XPM), GIF, TIFF, PNG, JPG

• Lossy, jaggies when transforming, good for photos

Vector 2D Graphics : Drawing Instructions

• Postscript, CGM, Fig, DWG

• Non-lossy, smooth when scaling, good for line art and diagrams

12

3 Curves

3.1 Fuctional Representations

Polynomial : Linear combination of integer powers of x, y, z

Polynomial Degree : I found a few different definitions here

• Online says: the highest degree of a polynomial. x
2
y
3 + x2 = 0 has degree 5

• The slides says: the total sum of powers but the example is wrong x
2 + y2 + z2 − r2 = 0 has degree 6

3.1.1 Explicit Functions

Representing one variable with another like y = x
2
. Works if ∃x there’s only one y. What if I have a sphere?

z = ±
√
r2 − x2 − y2

3.1.2 Implicit Functions

Curves and surfaces are represented as ”the zeros”

Good for representing (n − 1) dimensional objects in nD space

Sphere: x
2 + y2 − z2 − r2 = 0

3.1.3 Parametric Functions

2D Curve : Two functions of one parameter (x(u), y(u))

3D Curve : Three functions of one parameter (x(u), y(u), z(u))

3D Surface : Three functions of two parameters (x(u, v), y(u, v), z(u, v))

So the sphere example here is not algebraic, but is parametric

x(θ, φ) = cosφ cos θ

y(θ, φ) = cosφ sin θ

z(θ, φ) = sinφ

3.1.4 Comparisions

• Explicit isn’t used in graphics

• Implicit is good for:

– Computing ray/surface tension

13

– Point inclusion (inside/outside test)

– Mass and volume properties

• Parametric is good for:

– Subdivision, faceting for rendering

– Surface and area properties

• Parametric is popular in graphics

• Mathematical representation can be very complex

• Function to shape isn’t obvious

3.1.5 Points and Curves

To deal with complex formulas for curves, we use curve control points

Lagrangian Interpolation

• n + 1 points for a polynomial of degree n

• Curve wiggles through each point

• Not good for smooth flat curves

Approximation

• Points are weights that tug on the curve or
surface

3.1.6 Convex Hulls

Convex Hull : The smallest convex container of a set of points

14

3.2 Parametric Curves

Basic Representation : x = x(t), y = y(t)

Properties:

• Individual functions are single valued

• Approximations are done with piecewise polynomial curves

• Each segment is given by two cubic polynomials (x, y)

• Concise

3.2.1 Mathematical Definition

The cubic polynomials that define a parametric curve segment is given by:

Q(t) = [x(t)y(t)z(t)]T

and we know that

x(t) = axt3 + bxt2 + cxt + dx
y(t) = ayt3 + byt2 + cyt + dy
z(t) = azt3 + bzt2 + czt + dz

0 ≤ t ≤ 1

and that coefficients are represented with the matrices:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ax bx cx dx
ay by cy dy
az bz cz dz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
T = [t3 t

2
t 1]T

Then we know that:

Q(t) = C ⋅ T

Q(t) can be defined with four constraints if we rewrite C = G ⋅M

Geometry Matrix : G, a four element constraint matrix

Basis Matrix : M , a 4x4 matrix

15

Q(t) is now a weighted sum of the columns of the geometry matrix, G, each of which represents a point of
vector in 3-space. It is expanded as:

Q(t) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t)
y(t)
z(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [G1 G2 G3 G4]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m11 m21 m31 m41

m12 m22 m32 m42

m13 m23 m33 m43

m14 m24 m34 m44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t
3

t
2

t
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We can now manually multiply this out to get the following weighted sums of the elements:

x(t) = (t3m11 + t
2
m21 + tm31 +m41)g1x + (t3m12 + t

2
m22 + tm32 +m42)g2x

+ (t3m13 + t
2
m23 + tm33 +m43)g3x + (t3m14 + t

2
m24 + tm34 +m44)g4x

y(t) = (t3m11 + t
2
m21 + tm31 +m41)g1y + (t3m12 + t

2
m22 + tm32 +m42)g2y

+ (t3m13 + t
2
m23 + tm33 +m43)g3y + (t3m14 + t

2
m24 + tm34 +m44)g4y

z(t) = (t3m11 + t
2
m21 + tm31 +m41)g1z + (t3m12 + t

2
m22 + tm32 +m42)g2z

+ (t3m13 + t
2
m23 + tm33 +m43)g3z + (t3m14 + t

2
m24 + tm34 +m44)g4z

Blending Functions : B, the cubic polynomial weights in t, B =MT so Q(t) = G ⋅B

M and G matrices vary by curve

3.3 Continuity

Continuity : Two curves are C
i

continuous at a point p iff the i-th derivatives of the curves are equal at p

Geometric Continuity : G
i
, endpoints meet and the tangent vectors’ directions are equal

Parametric Continuity : C
i
, endpoints meet and the tangent vectors’ directions and magnitudes are

equal, G
i
∈ C

i

Given two curves Q
l

and Q
r
, the condition for C

0
and C

1
continuity is that the end points and their tangent

vectors are equal

16

Q
l(1) = Qr(0)

dQ
l

dt
(1) = dQ

r

dt
(0)

We can define the parametric tangent vector of a curve with the derivative of Q(t) as shown:

d

dt
Q(t) = Q′(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
dt
x(t)

d
dt
y(t)

d
dt
z(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
d

dt
C ⋅ T = C ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3t
2

2t
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3axt
2 + 2bxt + cx

3ayt
2 + 2byt + cy

3azt
2 + 2bzt + cz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This means, looking back at the above image, in order to compute continuity for Q(t), we need to compute
it for each component individually in 3D space

x
l(1) = xr(0) = P4x

d

dt
x
l(1) = 3(P4x − P3x)

d

dt
x
r(0) = 3(P5x − P4x)

Rinse and repeat with y and z

17

3.4 Bézier Curves

Bézier Curves : Defined with two end points plus two control points for the tangent vectors

P0 : Start point
P3 : End point
P0P1 : Tangent at P0

P2P3 : Tangent at P3

Bézier Geometry Matrix : GB =

[P0 P1 P2 P3]
Bézier Basis Matrix : MB

Q(t) = GB ⋅MB ⋅ T

3.4.1 Bernstein Polynomials

General Form: : i-th Bernstein polynomial for a degree k Bézier curve:

bik(u) = (ki)(1 − u)
k−i
u
i

Properties:

• Invariant under transformations

• Form a partition of unity

– Partition Of Unity : Given x functions, ∑x
i=0 fi(t) = 1∀t

• Low degree Bernstein Polynomials (BPs) can be written as high degree BPs

• BP derivatives are a linear combination of BPs

• Form a basis for space of polynomials with degree ≤ k

Cubic Bernstein Blending Functions : Represent the blending proportions among the control points:

b03(u) = (1 − u)3

b13(u) = 3u(1 − u)2

b23(u) = 3u
2(1 − u)

b33(u) = u3

Note: The coefficients follow Pascal’s triangle

18

Which gives us:

Q(t) = G ⋅B
Q(t) = b03(t)G1 + b13(t)G2 + b23(t)G3 + b33(t)G4

Q(t) = (1 − u)3P0 + 3u(1 − u)2P1 + 3u
2(1 − u)P2 + u

3
P3

3.4.2 General Form

Given:

• Control points P0, P1, ..., Pk

• 0 ≤ t ≤ 1

Then:

Q(t) =
k

∑
i=0

Pi+1(
k
i)(1 − t)

k−i
t
i

3.4.3 Properties

• k control points defines a single curve of degree k − 1

• Affine invariance

– Invariance under affine parameter transformations

• Convex Hull Property

– Curve lies completely within the convex hull of control points

• Endpoint interpolation

• Intuitive for design

– Curve mimics the control polygon

3.4.4 Issues

• More complex curves require more control points

– Potentially high degree polynomial with many wiggles

• Bézier blending functions have global support over the whole curve

– Moving one point changes the whole curves

Can be improved by linking many low degree Bézier curves together

19

3.5 Hermite Curves

• 3D curve of polynomial bases

• Geometrically defined by positions and tangents
at end points

• Not guaranteed to exist within a convex hull

• Supports tangent-continuous (C
1
) composite

curves

3.5.1 Algebraic Form

Knowing that derivatives give us a tangent line at a point, we can build a line in the following form:

P(u) : The line over time u
P

u(u) : The derivative of P (u)
: P

u(u) = P ′(u) = dP
du

(u)
P(0) : Control/End Point 0
P(1) : Control/End Point 1
P

u(0) : Control Tangent Vector 0
P

u(1) : Control Tangent Vector 1

The curve is very simple, just a parametric algebraic polynomial. A cubic curve is given by the following
formulas with coefficients a, b, c, d:

P (u) = au3 + bu2 + cu + d
P
u(u) = P ′(u) = 3au

2
+ 2bu + c

We can now calculate the control points and control tangents:

P (0) = a0
3
+ b0

2
+ c0 + d

P(0) = d

P (1) = a1
3
+ b1

2
+ c1 + d

P(1) = a + b + c + d

P
u(0) = 3a0

2
+ 2b0 + c

P
u(0) = c

P
u(1) = 3a1

2
+ 2b1 + c

P
u(1) = 3a + 2b + c

Using the values of the control points and tangents, we can calculate the constants:

20

a = 2P (0) − 2P (1) + Pu(0) + Pu(1)
b = −3P (0) + 3P (1) − 2P

u(0) − Pu(1)
c = P

u(0)
d = P (0)

Now we can put this all together and plug it in (this is messy sorry):

P (u) = au3 + bu2 + cu + d
P (u) = (2P (0) − 2P (1) + Pu(0) + Pu(1))u3

+ (−3P (0) + 3P (1) − 2P
u(0) − Pu(1))u2

+ P
u(0)u

+ P (0)
P (u) = 2P (0)u3 − 2P (1)u3 + Pu(0)u3 + Pu(1)u3

− 3P (0)u2 + 3P (1)u2 − 2P
u(0)u2 − Pu(1)u2

+ P
u(0)u

+ P (0)
P (u) = 2P (0)u3 − 3P (0)u2 + P (0)

− 2P (1)u3 + 3P (1)u2

+ P
u(0)u3 − 2P

u(0)u2 + Pu(0)u
+ P

u(1)u3 − Pu(1)u2

P (u) = (2u3 − 3u
2
+ 1)P (0)

+ (−2u
3
+ 3u

2)P (1)
+ (u3 − 2u

2
+ u)Pu(0)

+ (u3 − u2)PU(1)

This gives us the full equations:

P (u) = (2u3 − 3u
2
+ 1)P (0) + (−2u

3
+ 3u

2)P (1) + (u3 − 2u
2
+ u)Pu(0) + (u3 − u2)Pu(1)

P
u(u) = P ′(u) = (6u2 − 6u)P (0) + (−6u

2
+ 6u)P (1) + (3u2 − 4u + 1)Pu(0) + (3u2 − 2u)Pu(1)

3.5.2 Blending/Basis Curves

Given we transform the messy P (u) function into:

P (u) = H1(u)P (0) +H2(u)P (1) +H3(u)Pu(0) +H4(u)Pu(1)

21

The blending/basis functions are then:

H1(u) = 2u
3 − 3u

2 + 1
H2(u) = −2u

3 + 3u
2

H3(u) = u3 − 2u
2 + u

H4(u) = u3 − u2

We now see the following behavior:

At u = 0 :
0 = H2, H3, H4, H

′
1, H

′
2, H

′
4

1 = H1, H
′
3

At u = 1 :
0 = H1, H3, H4, H

′
1, H

′
2, H

′
3

1 = H2, H
′
4

3.5.3 Matrix Form

We can define the Hermite blending functions as the following where MH is the Hermite characteristic matrix

H = [H1(u) H2(u) H3(u) H4(u)] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −3 0 1
−2 3 0 0
1 −2 1 0
1 −1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
3

u
2

u
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=MHU = BH

We then collect the control points and tangents into the following geometry matrix G:

G = [P (0) P (1) P
u(0) P

u(1)]

Putting this together gives us the following matrix definition of P (u):

P (u) = GMHU = GBH

22

3.5.4 Hermite and Bézier

Bézier to Hermite Transformation:

q0 = p0

q1 = p3

t0 = 3(p1 − p0)
t1 = 3(p2 − p3)

Hermite to Bézier Transformation:

p0 = q0

p1 = q0 +
1

3
t0

p2 = q1 −
1

3
t1

p3 = q1

Note: Derivative is defined as 3 times offset

23

3.6 Catmull-Rom Splines

n : Number of points

p0 : Start point

pn : End point

T0 : Tangent at 0 (Given)

Tn : Tangent at n (Given)

Tk : Tangent at any point pk where k ≠ 0, n is pk+1−pk−1
2

3.6.1 Tension

To apply Tension T to a Catmull-Rom spline, adjust the tangents at interior joint points pk with:

Tk = (1 − T)pk+1 − pk−1
2

When T = 0, we get a standard Catmull-Rom spline

When T = 1, the tangent is 0

We can scale user-given tangent vectors with tension:

T
′
0 = (1 − T)T0

T
′
n = (1 − T)Tn

24

3.7 B-Splines

Rational : B-splines are defined as a ratio of cubic polynomials

Control Points : Pi

Blending Function : Bi Points defined by blending the control points

P (t) =
m

∑
i=0

Bi,d(t)Pi

There are no limits on the value of t. but Bi(t) is mostly 0.

Cox-deBoor Recursion : Defines the blending function Bi,d where i is the point and d is the degree of
the curve

Bi,0(t) = {1 ti ≤ t < ti+1

0 otherwise

Bi,d(t) =
t − ti
ti+d − ti

Bi,d−1(t) +
ti+d+1 − t
ti+d+1 − ti+1

Bi+1,d−1(t)

Bi,0(t) : Step function. Either 0 or 1
Bi,1(t) : Piecewise function that spans two intervals. Goes from
0 to 1
Bi,2(t) : Piecewise quadratic function that spans four intervals.

Goes from 0 to 1
4

, 1
4

to 3
4

then back
Bi,3(t) : Piecewise cubic function that spans four intervals. Goes

from 0 to 1
6

, 1
6

to 2
3

then back

3.7.1 Knots

Notice how from t = 0tot = 1, all the functions are not zero, this means the sum comes to 1. The convex hull

25

property holds for all segments of a B-spline. Notice how segments connect to each other and transisition
into each other.

Knots need to be chosen uniformly to get a uniform B-Spline. The closer knots are, the more weight given
to them:

For example, the knots {0, 0, 0, 0, 1, 1, 1, 1} creates a Bezier curve.

3.7.2 Drawing a Line

When building lines, don’t use 0 ≤ t ≤ 1. Now use the knot points: tmin ≤ t0 ≤ t1 ≤ ... ≤ tm−1 ≤ tm ≤ tmax

When drawing, we have the following specifications:

m : Must be greater or equal to 3

Pi : Control points P0 . . . Pm. Represented by squares in the above image

ti : Knot points t3 . . . tm+1. Represented by circles in the above image

Qi : The cubic polynomial line segments being drawn Q3 . . . Qm

• Defined over knot interval [ti, ti+1]

26

• Defined by control points Pi−3 . . . Pi

3.7.3 Properties

Local Control : Since the polynomial coefficients only depend on a few points, adjusting knots only affects
local curve. See below how moving only P4 affects the local curve.

Convex Hull : B-Splines follow the convex hull property

Continuity : Since derivatives are really easy for cubics, it’s easy to show C
0
, C

1
, and C

2

p(u) =
3

∑
k=0

u
k
ck = c0 + uc1 + u

2
c2 + u

3
c3

p
′(u) = c1 + 2c2u + 3c3u

2

Benefits

Rational : Ratio of Polynomials

Since they’re rational, they’re invariant under:

• rotation

• scale

• translation

27

• perspective transformations

These transformations only redefine the control points then the curve is regenerated. Non-rationals are
variant under perspective transformations.

Rational splines can also precisely define conic sections and other analytic functions. You can only approxi-
mate conics with non-rationals.

3.8 NURBS

NURBS : Non-Uniform Rational B-splines

Different notations can be used:

Blending Function : Bi,d(u) or Ni,d(u)

Parameter Variable : u or t

Curve : C or P or Q

Control Points : Pi or Bi

Variables for order, degree, number of control points, etc are consistently inconsistent.

When defined using homogeous coordinates, the 4th dimension of each Pi is the weight. In a 2D space, this
is the 3rd dimension of Pi.

If the curve is defined as a weighted euclidian, a separate constant wi is the weight of each control point.

Basic Idea : Four dimensional non-uniform B-splines which are normalized via homogeneous coordinates

Given functions X(t), Y (t), Z(t) and W (t) that are all cubic polynomials with controls points specified in
homogeneous coordinates [x, y, z, w] then:

Pi = [x, y, z, w]

x(t) = X(t)
W (t)

y(t) = Y (t)
W (t)

z(t) = Z(t)
W (t)

In a 2D case, Z(t) = 0

Example : On the left is a unit circle in 3D homogeneous coordinates, the right is the rational parameter-
ization of it

28

X(t) = 1 − t
2

Y (t) = 2t

Z(t) = 0

W (t) = 1 + t
2

x(t) = 1 − t2

1 + t2

y(t) = 2t

1 + t2

z(t) = 0

We can define a d-th degree NURBS curve C as:

C(u) =
∑n−1
i=0 wiBi,d(u)Pi
∑n−1
i=0 wiBi,d(u)

This can also be written as:

C(u) =
n−1

∑
i=0

Pi
wiBi,d(u)

∑n−1
j=0 wjBj,d(u)

The weights now induce a new rational basis function, R which can be defined as:

Ri(u) =
wiBi,d(u)

∑n−1
j=0 wjBj,d(u)

Give that Ri,d(u) is a rational basis function on u ∈ [0, 1] we can write the general form of the curve as:

C(u) =
n−1

∑
i=0

Ri,d(u)Pi

3.8.1 Weights

Since wi of Pi only affects the range [ui, ui+k+1), the following behavior is observed:

• When wi = 0, then Pi does not contribute to C

• When wi increases, point B and curve C are pulled toward Pi and pushed away from Pj

• When wi decreases, point B and curve C are pulled toward Pj and pushed away from Pi

• As wi approaches infinity, B approaches 1

29

30

4 Drawing Parametic Curves

4.1 de Casteljau Algorithm

Developed by Paul de Casteljau at Citroën in the late 1950s

4.1.1 Linear Interpolations

Given a line from point a to point b, interpolating between them is an affine combination of points

x(t)a + (b − a)t

Given:

• C, a continuous curve

• P , an arbitrary plane

• PLI, a piecewise linear interpolant of C

Then the number of crossings of P by PLI is no greater than those of C

4.1.2 Drawing a Line

Base Case : Two points

• Control points (p0, p1)

• Map parameter u to p0p1

p(u) = (1 − u)p0 + up1∀0 ≤ u ≤ 1

A Step Up : Three points

• Control points (p0, p1, p2)

• Interpolate p0p1 and p1p2

• 0 ≤ u ≤ 1

p01(u) = (1 − u)p0 + up1
p11(u) = (1 − u)p1 + up2
p(u) = (1 − u)p01(u) + up11(u)

Based off the fact ratio(a, b, c) = b−a
c−a

, so:

31

ratio(p0, p01(u), p1) = ratio(p1, p11(u), p2) = ratio(p01(u), p(u), p11) = u

General Form:

Control Points: p0, p1, ..., pn ∈ R
3
, t ∈ R

pir(u) = (1 − u)pi(r−1)(u) + up(i+1)(r−1)(t) {
r = 1, ..., n

i = 0, ..., n − r

pi0(u) = pi
p0n(u) =?

4.1.3 Observations

• Interpolation along the curve is based only on u

• Drawing the curve’s pixels requires iterating over u at sufficient refinement

• What is the right increment? Not constant

• Compute points and define a polyline

4.2 Subdivisions

Basics :

• Primitives defined by control polygons

• Set of control points is not unique

– More than one way to compute a curve

• Subdivision refines representation of an object by adding control points

With Bezier Curves:

32

• Given control points p0, p1.p2, p3

• Calculate p(0.5) to subdivide the curve into two
curves

– New control point p03 = p(0.5)

• Use edges to find new control points for each
curve

– p01(0.5) = 0.5p0 + 0.5p1

– p02(0.5) = 0.5p01 + 0.5p11

– p21(0.5) = 0.5p2 + 0.5p3

– p12(0.5) = 0.5p11 + 0.5p21

• Two new curves

– Control points: p0, p01, p02, p03

– Control points: p03, p12, p21, p3

• Overall curve shape is not affected

4.2.1 Recursive Subdivisions

Curve Flatness Test : If d1 and d2 are both less than some ε, then the curve is flat

Distance from a Point to a Line :

1. Project point P , (px, py), onto line L, [(lx0, ly0), (lx1, ly1)]

2. Find location of the projection

d(P,L) =
(ly0 − ly1)px + (lx1 − lx0

)py + (lx0ly0 − lx1ly0)√
(lx1 − lx0)2 + (ly1 − ly0)2

The Algorithm : DrawCurveRecSub(curve, e)

1. if straight(curve, e)

(a) DrawLine(curve)

33

2. else

(a) SubdivideCurve(curve, LeftCurve,RightCurve)
(b) DrawCurveRecSub(LeftCurve, e)
(c) DrawCurveRecSub(RightCurve, e)

4.3 Bézier Curves

Iterate Over t with formulas:

• Increment t

• Calculate x(t), y(t), z(t)

• Can’t easily control segment lengths and error

Iterate Over t with de Casteljau:

• Increment t

• Apply de Casteljau algorithm

• Successive interpolation of control polygon edges

Recursive Subdivision:

• Recursively subdivide de Casteljau polygons until they are approximately flat

• Use Bresenhams to draw line

Degree Elevation:

• Given control points

• Generate additional control points

• Increase the degree of the curve

• Keep the curve the same

• In the limit, this converges to the curve defined by the original control points

• Generate control points until the points generated approximate the curve necessary

34

4.4 NURB Conic-Sections

Obtained by projecting a parabola onto a plane. Assign w to each control point

• 3D Case: Rational curve is a 4D object

• 2D Case: Rational curve is a 3D object

We can define the curve with three control points where the weights of the first and last control point are 1,
Given the knot vector {0, 0, 0, 1, 1, 1}, the weight of the center control point gives the following behavior:

• w < 1 : Ellipse

• w = 1 : Parabola

• w > 1 : Hyperbola

We can create a circular arc when the two lengths of the control point polygon are equal. The chord
connecting the first and last control points must connect with the polygon at an angle θ which is equal to
half of the angle of the arc. For example, in a 60

◦
then θ = 30

◦
. Additionally, the weight of the inner control

point must be cos(θ). The knot vector, just as above is {0, 0, 0, 1, 1, 1}

35

Circle : Three 120
◦

arcs
knots = {0, 0, 0, 1, 1, 2, 2, 3, 3, 3}

B0 = {−0.866, 0.5, 1}
B1 = {−1.732,−1, 0.5}
B2 = {0,−1, 1}
B3 = {1.732,−1, 0.5}
B4 = {0.866, 0.5, 1}
B5 = {0.2, 0.5}
B6 = B0 = {−0.866, 0.5, 1}

Square : Four 90
◦

arcs
knots = {0, 0, 0, 1

4
, 1
4
, 1
2
, 1
2
, 3
4
, 3
4
, 1, 1, 1}

B0 = {1, 0, 1}

B1 = {1, 1,

√
2

2
}

B2 = {0, 1, 1}

B3 = {−1, 1,

√
2

2
}

B4 = {−1, 0, 1}

B5 = {−1,−1,

√
2

2
}

B6 = {0,−1, 1}

B7 = {1,−1,

√
2

2
}

B8 = B0 = {1, 0, 1}

4.5 Knot Insertion

Basic Idea : We want to add points but keep the same curve.

• Decide where we want to add control point

• Add knot

• Find the affected d − 1 control points

• Replace it with d new control points

Now looking at this more in-depth, we’re given:

36

P = (P0, P1, ..., Pn) Control Points

U = (u0, u1, ..., um) Knots

d = degree of curve

We want to insert a new knot uk into the knot vector without changing the shape. If uk ∈ [ui, ui+1), only
the basis functions for (Pi, ..., Pi−d) are non-zero.

Find d new control points, everything else remains unchanged:

• Qi on edge (Pi−1, Pi)

• Qi−1 on edge (Pi−2Pi−1)

• ...

• Qi−d+1 on edge (Pi−dPi−d+1)

We actually define our new control point as:

Qj = (1 − αj)Pj−1 + αjPj

We define α as:

αj =
uk − uj
uj+d − uj

4.5.1 Properties

• Increasing multiplicity of a knot decreases number of non-zero basis functions at that knot

• At a knot of multiplicity d, there is only one non-zero basis function

• Corresponding curve p(u) is affected by only one control point Pi

4.6 de Boor Algorithm

This is a generalization of de Casteljau’s Algorithm.

Goal : Find a fast and numerically stable way for finding a point on a B-spline curve

Observation : If knot u is inserted d times to a B-spline, then p(u) is the point on the curve

37

1: function DeBoors(Pn, um, u)
2: if u ∈ [ui, ui+1) and u ≠ ui then
3: h := d
4: end if
5: if u = ui and (ui is a knot of multiplicity s) then
6: h := d − s
7: end if
8: for Affected Control Point do
9: Pi−s,0 := Pi−s

10: end for
11: for r := 1 → h do
12: for j := i − d + r → i − d do
13: aj,r :=

u−uj

uj+d−r+1−uj

14: Pj,r := (1 − aj,r)Pj−1,r−1 + aj,rPj,r−1
15: end for
16: end for
17: return Pi−s,d−s
18: end function

Compare To De Casteljau’s Algorithm:

• De Casteljau’s Algorithm

– Dividing points are computed with a pair of numbers (1 − u) and u that don’t change

– Can be used for subdivision

– Uses all control points

• De Boor’s Algorithm

– These pairs of numbers are different and depend on the column number and control point number

– Intermediate control points not sufficient

– Only affected control points (d − 1) are used in the computation

38

4.7 Oslo Algorithm

Goal : Subdivision for B-Splines

• Curve C with control points (P0, ..., Pm)

• Insert knot at any point

• Two new points P
′
k and P

′′
k

• Apply recursively on new parts:

– P0, ..., P
′
k, P

′′
k , ..., Pm−1

– P1, ..., P
′
k, P

′′
k , ..., Pm

4.8 Barycentric Coordinates

Given a triangle with vertices {A,B,C} and weights {wA, wB , wC), their center of gravity (barycenter) will
coincide with any point K inside the triangle. This defines K as:

K = wAA + wBB + wCC1 = wA + wB + wCwA = 0 Points on BC

wB = 0 Points on AC

wC = 0 Points on AB

To calculate the weights now, we can calculate the are of each of the subtriangles, , then use ratios:

wA =
SubArea(B,C,K)
Area(A,B,C)

wB =
SubArea(A,C,K)
Area(A,B,C)

wC =
SubArea(A,B,K)
Area(A,B,C)

SubArea(d, e, f) = ∣(d − f) ∗ (e − f)∣
2

Given vertices {A,B,C} and a centroid K we can find the coordinates of the weights:

39

xK = wAxA + wBxB + wCxC
yK = wAyA + wByB + wCyC
xK = wAxA + wBxB + (1 − wA − wB)xC
yK = wAyA + wByB + (1 − wA − wB)yC

wA =
(xB − xC)(yC − yK) − (xC − xK)(yB − yC)
(xA − xC)(yC − yK) − (xB − xC)(yA − yC)

wB =
(xA − xC)(yC − yK) − (xC − xK)(yA − yC)
(xB − xC)(yC − yK) − (xA − xC)(yB − yC)

wC = 1 − wA − wB

40

5 Surfaces

5.1 Exact vs Approximation

There are two ways to represent and model 3D objects:

1. Exactly

2. Approximately

Overview

Exact

• Wireframe

• Parametric Surface

• Solid Model (CSG, BRep, Implicit Solid Model-
ing)

• Precise model of object topology

• Mathematically represent all geometry

Approximate

• Facet / Mesh (Surfaces)

• Voxels (Volume Info)

• A discretization of the 3D object

• Use simple primitives to model topology and ge-
ometry

Pros

Exact

• High precision

• Lots of modeling environments

• Physical properties

• High level control

• Many applications (tool path generation, mo-
tion, etc)

• Compact

Approximate

• Easy to implement

• Easy to acquire

• Easy to render

• Many algorithms

41

Cons

Exact

• Complex data structures

• Extensive algorithms

• Many specific nuanced formats

• Hard to acquire data

• Requires translation for rendering

Approximate

• Lossy

• Data structure sizes can get huge

• Easy to break

• Not good for many applications

• Lots of guesswork

5.2 Wireframes

The general idea is to represent the model as the set of its edges. We can describe a cube as:

Vertices Lines
A ∶ (0, 0, 0) AB
B ∶ (1, 0, 0) BC
C ∶ (1, 1, 0) CD
D ∶ (0, 1, 0) DA
E ∶ (0, 0, 1) EF
F ∶ (1, 0, 1) FG
G ∶ (1, 1, 1) GH
H ∶ (0, 1, 1) HE

AE
BF
CG
DH

The problem is that wire frames are visually ambiguous since there are no surfaces, the inside is hard to tell
from the outside. It’s also hard to model a shape wire by wire.

5.3 Surface Models

The general idea now is to represent a model as a set of faces and patches. The issue now is getting faces to
“line up” nicely and accurately. Which side is “inside” and which is “outside”?

BRep Data Structure : Winged Edge Data Structure that has:

42

• Vertex

– (x, y, z) point

– n pointers to coincident edges

• Edge

– 2 pointers to end-point vertices

– 2 pointers to adjacent faces

– Pointer to the next edge

– Pointer to the previous edge

• Face

– m pointers to edges

i
Vertices
V1 (x, y, z) E3 E1
V2 (x, y, z) E1 E2 E4
V3 (x, y, z) E2 E3 E5
V4 (x, y, z) E4 E5

Edges
E1 V 1 V 2 F1 E2 E3
E2 V 2 V 3 F1 F2 E3 E1
E3 V 3 V 1 F1 E1 E2
E4 V 2 V 4 F2 E5 E2
E5 V 3 V 3 F2 E2 E4

Faces
F1 E1 E2 E3
F2 E2 E4 E5

5.4 Biparametric Surfaces

Biparametric Surfaces : Generalization of parametric curves with two parameters s and t

Biparametric Patch : (u, v) maps to a 3D point on the patch

F (u, v) = (x, y, z) = (x(u, v), y(u, v), z(u, v))

43

5.5 Bicubic Surfaces

In 3D, we allow the points in the geometry matrix G to vary in 3D along t:

Q(s, t) = [G1(t) G2(t) G3(t) G4(t)]MS

For a fixed t1, thenQ(s, t1) is a curve. Gradually incrementing t1 to t2 gives us a new curve. This combination
of curves creates a surface. Above, Gi(t) are 3D curves.

Each Gi(t) is defined as Gi(t) = GiMT where:

Gi = [gi1 gi2 gi3 gi4]

We then transpose Gi(t):

44

Gi(t) = TTMT
G
T
i

Then substitute Gi(t) into Q(s) gives:

Q(s, t) = TTMT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g11 g21 g31 g41
g12 g22 g32 g42
g13 g23 g33 g43
g14 g24 g34 g44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
MS

Q(s, t) can be written over the 0 ≤ s, t ≤ 1 interval as:

x(s, t) = TTMT
GxMS

y(s, t) = TTMT
GyMS

z(s, t) = TTMT
GzMS

5.6 Bicubic Bézier Patches

Also called a Bézier Surface. Defined as:

x(s, t) = TTMT
BGBx

MBS

y(s, t) = TTMT
BGBy

MBS

z(s, t) = TTMT
BGiBzMBS

Given a data array P = [pij]:

p⃗(u, v) =
3

∑
i=0

3

∑
j=0

bi(u)bj(v)p⃗ij = uTMBPM
T
Bv

The cubic Bézier blending function is defined as:

b(u) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 − u)3

3u(1 − u)2

3u
2(1 − u)

u
3

Features of the Bicubic Bézier Patch include:

• Interpolates 4 corner control points

45

• 4 edges are Bézier curves

• Has convex hull property

Faceting : Defining triangle surfacs that tessellate the patch

The process is:

• Nested loops for u and v

• For each (u, v) from (0, 0) through (nu − 1, nv − 1)

– Calculate 3D point on patch

– Keep track of linear index

– Define triangles

triangle[k] = (vert[i, j], vert[i + 1, j], vert[i + 1, j + 1])
triangle[k] = (vert[i, j], vert[i + 1, j + 1], vert[i, j + 1])

5.6.1 Surface Normals

Normals are used for:

• Shading

• Interference detection in robotics

• Calculating offsets in numeric controlled machining

The general process is as follow:

1. Compute s tangent vector

2. Compute t tangent vector

3. Compute the cross product of s and t

Since s and t are tangent to the surface, their cross product is the normal vector.

First, the s tangent vector:

Q(s, t) = TT ∗MT
∗G ∗M ∗ S

δ

δs
Q(s, t) = δ

δs
(TT ∗MT

∗G ∗M ∗ S)

= T
T
∗M

T
∗G ∗M ∗

δ

δs
(S)

= T
T
∗M

T
∗G ∗M ∗ [3s2 2s 1 0]

46

Then the t tangent vector:

Q(s, t) = TT ∗MT
∗G ∗M ∗ S

δ

δt
Q(s, t) = δ

δt
(TT ∗MT

∗G ∗M ∗ S)

=
δ

δt
(TT) ∗MT

∗G ∗M ∗ S

= [3t2 2t 1 0]T ∗MT
∗G ∗M ∗ S

Then their cross product:

QN(s, t) = δ

δs
Q(s, t) × δ

δt
Q(s, t) (1)

QN(s, t) = [yszt − ytzs zsxt − ztxs xsyt − xtys] (2)

(3)

47

5.7 B-Spline Surfaces

We get the following repesentation for B-Spline patches:

x(s, t) = TT ∗MT
Bs ∗GBsx ∗MBs ∗ S

y(s, t) = TT ∗MT
Bs ∗GBsy ∗MBs ∗ S

z(s, t) = TT ∗MT
Bs ∗GBsz ∗MBs ∗ S

48

5.8 Surfaces of Revolution

Directrix : A planar curve being revolved

Axis of Revolution : The axis the directrix is revolved around, typically the z axis

Surfaces of revolution produce circular cross sections

Directrix : D(u) = (f(u), 0, g(u))

Surface : S(u) = (f(u) cos θ, f(u) sin θ, g(u)), 0 ≤ u ≤ 1, 0 ≤ θ ≤ 2π

Tangents : Similar process as before:

1. δ
δu
S(u, θ) = (f ′(u) cos θ, f

′(u) sin θ, g
′(u))

2. δ
δθ
S(u, θ) = (−f(u) sin θ, f(u) cos θ, 0)

3. N(u, θ) = δ
δu
S(u, θ) × δ

δθ
S(u, θ)

49

5.9 Drawing Parametic Surfaces

Typically done by going “patch by patch”, but there are two main options:

• Render directly from the parametric description

• Approximate with a polygon mesh, then rend the mesh

Direct Rendering : Scan line by line, then pixel by pixel. Issues include:

• How to go from (x,y) “screen space” to point on the 3D patch

• Max and Min y coordinates may not lie on boundaries

• Silhouette edges result from patch bulges

• Need to track silhouettes and boundaries

5.9.1 Object Space Conversion

A type of patch to polygon rendering. The resolution depends on the object space. Three techniques:

• Iterative evaluation

• Uniform subdivision

• Non-uniform subdivision

Plane By Plane Rendering : Scan plane by plane iteratively

Given a patch x = X(u, v), y = Y (u, v), z = Z(u, v), this looks like:

• Find the intersection of the patch with XZ plane
producing a planar curve

• Draw the curve using a known algorithm

• Note: When rendering, pixel-by-pizel color val-
ues can be computed this way

50

Uniform Subdivision

1. Cut parameter space into equal parts

2. Find new points on surface

3. Recurse and repeat until desired resolution

4. Split squares into triangles

Non-Uniform Subdivision

1. More facets in areas of high curvature

2. Use change in normals to assess curvature

3. Break patch into subpatches based on curvature
changes

4. Split squares into triangles

In Practice:

You need fewer triangles for models further away from the camera

In 1D : It’s just piecewise linear subdivision

xn =
1

2
(xl + xr)

yn =
1

2
(yl + yr)

1D Four Points:

p2i+1,j+1 =
1

16
(−pi−1,j + 9pi,j + 9pi+1,j − pi+2,j)

5.9.2 Image Space Conversion

A type of patch-polygon rendering. The resolution depends on the pixels and screen. Control the subdivision
based on the screen criteria:

• Minimum pixel area : Stop when the patch is 1 pixel

51

• Screen flatness : Stop when the patch converges to a polygon

• Screen flatness of Silhoette edges : Stop when edge is straight or 1 pixel

5.9.3 Silhouette Rays

An edge is a silhouette edge when the viewing ray is tangent to the point it hits on the surface. Where N
is the normal, and L is the line of sight:

N(S) ⋅ L = 0

52

6 Clipping

Goal : Only draw lines inside of the window and clip the lines to window boundary

6.1 Scissor Clipping

While scanning and converting the line:

if xmin < x < xmax and ymin < y < ymax then
Draw (x, y)

else
Do Nothing

end if

The problem is this is too slow and we do more work than necessary. It’s better to clip lines to window
instead of calculating lines outside of the window.

6.2 Cohen-Sutherland Line Clipping

It’s easy to know which lines are entirely inside and entirely outside a window. It’s harder to figure out the
partials.

Given a straight line from P0 = (x0, y0) to P1 = (x1, y1) and a window defined by lines WT,WR,WB,WL
we:

• Is the line completely in the window? Draw it

• Is the line completely outside the window? Ignore it

53

• Does the line intersect the window? Do more work

There’s a basic four bit code we get based on the endpoints P0 and P1

B3 : Point above window y >WT
B2 : Point below window y <WB
B1 : Point left of window x >WR
B0 : Point right of window x <WL

So now, computing ¬(P0 ∨ P1) will tell us of the line is completely visible. The line is completely outside
the window when P0 ∧ P1.

Using the bits, we find the line ((x0, y0), (x1, y1)) that intersects with the window border, then use similar
triangles to find the point of intersection:

xc =WL

yc − y0
y1 − y0

=
WL − x0
x1 − x0

yc =
WL − x0
x1 − x0

(y1 − y0) + y0

Then, replace (x0, y0) with (xc, yc), recompute the codes and continue until all lines are inside the window.

6.3 Cyrus Beck Technique

Recall a parametric line P with point on it’s line t where 0 ≤ t ≤ 1 and P (0) = P0 and P (1) = P1:

P (t) = P0 + t(P1 − P0) = (1 − t)P0 + tP1

We can intersect two edges (P0, P1) and (P2, P3) with the following:

Ea = P0 + ta(P1 − P0)
Eb = P2 + tb(P3 − P2)
Da ≡ P1 − P0

Db ≡ P3 − P2

They intersect when:

P0 + taDa = P2 + tbDb

Giving us:

54

x0 + dx0ta = x2 + dx2tb
y0 + dy0ta = y2 + dy2tb

We can now solve for ta and tb :

ta =
dy2(x0 − x2) + dx2(y2 − y0)

dy0dx2 − dx0dy2

tb =
dy0(x2 − x0) + dx0(y0 − y2)

dy2dx0 − dx2dy0

If the denominator is 0, the lines are parallel. If 0 ≤ ta, tb ≤ 1, the edges intersect.

Goal : Clip lines against convex polygons

Line : P (t) = P0 + t(P1 − P0)
Point on Edge : PEi

Normal to Edge i : Ni
Displacement : D = (P1 − P0)
Note: Make sure D isn’t 0 and the lines aren’t parallel

0 = Ni[P (t) − PEi
]

0 = Ni[P0 + t(P1 − P0) − PEi
]

0 = Ni[P0 − PEi
] +Nit(P1 − P0)

The calculate t:

t =
−Ni[P0 − PEi

]
NiD

For the window edges, Ni is easy:

• WT : (0, 1)

• WB : (0, -1)

• WL : (-1, 0)

• WR : (1, 0)

For arbitrary edges:

55

E =
V1 − V0
∣V1 − V0∣

Calculate edge direction

Nx = Ey Rotate − 90
◦

Ny = −Ex Rotate − 90
◦

Then to calculate the line segment:

1. Find intersection points between line and every window edge

2. Classify points as entering (PE) or leaving (PL)

• PE if angle P0P1 and Ni is greater than 90
◦

• PL otherwise

3. Te = maxte

4. Tl = maxtl

5. Discard if Te > Tl

6. If Te < 0 then Te = 0

7. If Tl > 1 then Tl = 1

8. Use Te, Tl to compute intersection coordinates (xe, ye) and (xl, yl)

6.4 Polygon Clipping

Polygon : Ordered set of vertices, usually counter clockwise. Two consecutive vertices define an edge. Left
side of an edge is inside while the right is the outside. Last vertex is implicitly connected to the first.

The edges of polygon need to be tested against the clipping rectangle. This creates a few cases we should
be prepared to handle:

• May need to discard edges

• May need to add new edges

• May need to divide edges

56

• One polygon may become many

6.5 Sutherland-Hodgman Algorithm

Basic Idea : Clip single polygon using a single infinite clip edge 4 times

Given the vertices of the polygon (v1, v2, ..., vn) and a single infinite clip edge with inside and outside
information, we can:

1: function SutherlandHodgeman(P,W)
2: for ∀ polygons Pi ∈ P do
3: for ∀ clipping edges Ec ∈W do
4: for ∀ edges EpinPi do
5: // Check clipping cases
6: if Case 1 Applies then
7: Output vi+1
8: else if Case 2 Applies then
9: Output intersection point

10: else if Case 3 Applies then
11: No output
12: else if Case 4 Applies then
13: Output intersection point and vi+1
14: end if
15: end for
16: end for
17: end for
18: end function

Then a visualization of the four clipping cases:

57

This produces the following input and output. Note the edges (X,Y) and (Z,W) exist. We have an issue
where instead of two convex polygons created, we have one concave polygon.

6.6 Weiler-Atherton Algorithm

Given polygons A and B as linked lists, Weiler-Atherton starts with the following. This starting point is
used for any of the sub functions of the algorithm.

1. Find all the edge intersections and

2. Place into another list. Insert as “intersection” nodes

3. Determine inside and outside nodes

The intersection special cases are:

• The edges are parallel? Ignore

• The intersection is a vertex and the vertex should be replaced with an intersection node

– Va is on Eb

– Ea runs through Ea

From here, there are two cases, union and intersection.

6.6.1 Intersection

1. Start at intersection node

2. If it’s connected to an “inside” vertex, go there

3. Else go to an intersection point

58

4. If neither stop

5. Traverse linked list

6. At each intersection point switch to other polygon and remove intersection point from list

7. Repeat until returning to starting intersection point

8. If the intersection list isn’t empty, pick another point

9. All visited vertices and nodes define the overlapping polygon

The below image is traversed in the order: {V1.V7.P0} and {P3, V5.P2}

Special Cases : When the polygons don’t intersect

• If one is inside the other, return the inner polygon

• Otherwise, return none

6.6.2 Union

1. Find an “outside” vertex

2. Traverse linked list

3. At each intersection, switch to the other polygon

4. Repeat until back at start

5. If there are still unvisited “outside” edges, repeat

The below image is traversed in the order: {V0.V1.V2, V3, P0, V8, V4, P3, V0} and {V6, P1.P2}

59

Special Cases : When the polygons don’t intersect

• If one is inside the other, return the outer polygon

• Otherwise, return both

1: function UnionTwoSimpleConvexPolygons(A,B)
2: P0 := A
3: P1 := B
4: vi := a vertex from A outside of B
5: Output vi
6: Ec := (vi, vi+1)
7: while (∣∣Output∣∣ < 2) or (Output.first ≠ Output.last) do
8: Intersect Ec with all edges in P1
9: // There can be at most 2 intersections

10: if Intersections = 0 then
11: Output vi+1
12: Ec := Ec.next
13: else
14: Output intersection with lowest t value along Ec
15: Output last vertex of P1’s intersected edge
16: Ec := P1.next
17: T := P1
18: T := P1
19: P1 := P0
20: P0 := T
21: end if
22: end while
23: end function

To find if a point is inside a polygon?

Jordan Curve Theorem : A point p is inside polygon P if for any ray shot from p to the outside of P ,
there are an odd number of edges crossed.

1: function InteriorPoint?(p, P)
2: p

′
:= known point outside P

3: pp
′
:= the edge between p and p

′

4: Intersect pp
′
with all polygon edges and count intersections

5: if count is even then
6: False
7: else
8: True
9: end if

10: end function

60

61

7 Filling

Two main parts:

1. Which pixels do I fill?

2. What values do I fill them with?

Coherence : Make everything go together, but in what way?

• Spatial : Pixels are the same from pixel to pixel and scan-line to scan-line

• Span : All pixels on a span get the same value

• Scan-Line : Consecutive scan lines are the same

• Edge : Pixels are the same along edges

7.1 Rectangles

It’s an easy algorithm:

1: function FillRectangle(R)
2: for xi := xmin → xmax do
3: for yi := ymin → ymax do
4: Color (xi, yi)
5: end for
6: end for
7: end function

What happens if two rectangles share an edge? What color do we color the boundary pixels? So as a general
rule of thumb only color pixels in [xmin, xmax) and [ymin, ymax).

7.2 Polygons

We can take a similar approach where we take a scan-line through each height y and fill the interior xs.
Two issues though. First, notice below the intersections a and d are integer values and fall perfectly on the
line. The intersections b and c do not fall precisely on the line. Second, shooting off this, which pixels are
interior?

62

Option 1 : Midpoint Algorithm
Use the midpoint algorithm on each edge, fill in pixels
between the found extrema points
Issue: The midpoint algorithm has no sense of in and
out, so many extrema pixels are outside the polygon.

Option 2 : Strict Inside
Find intersections of scan line with edges, sort inter-
sections by increasing x, fill pixels based on a parity
bit Bp
Bp is initially even (off). At each intersection, invert
the bit. Draw when odd, don’t draw when even.
Issue: What do we do with fractional x? What about
intersections at vertices? Shared vertices? Vertices
that define a horizontal edge?

In option 2, we come across an issue where vertices will be counted twice, and flip the parity bit Bp twice.
We need to account for the following by comparing the y value with the y value of neighboring vertices:

• Both neighboring vertices on the same side of the scan line? Ignore

• Both neighboring vertices on different sides of the scan line? Count Once

Then for filling horizontal edges, how do we handle this?

1. Apply open and closed status to vertices to other edges

• ymin is closed, ymax is open

2. On AB, A is at ymin for JA. AB does not contribute. Bp is odd and draws
AB

3. Edge BC has ymin at B, but AB does not contribute. Bp becomes even
and drawing stops

4. Start drawing at IJ . Bp is odd

5. C is ymax for BC. Bp stays odd

6. D is ymin for DE. Bp becomes even. Stop drawing and ignore CD

7. I is ymax for IJ . Bp is even. No drawing occurs

8. Bp still even, ignore IH

9. H is ymin for GH. Bp becomes off. Draw FE

10. Ignore GF

63

1: function FillPolygon(P)
2: for ∀ edges Ei ∈ P.E do
3: if xmini

== xmaxi
then

4: Ignore
5: end if
6: if ymax is on a scanline then
7: Ignore
8: end if
9: if ymin ≤ ys ≤ ymax then

10: Add Ei to scan line ys’s edge list
11: end if
12: end for
13: for ∀ scanline ys ∈ [ymin, ymax] do
14: Calculate intersections with edges on list
15: Sort intersections by x
16: Perform parity bit scan line filling
17: Check intersection special cases
18: end for
19: Clear scan lines edge list
20: end function

How do we handle slivers though? Places where the polygon is thinner than the width of a pixel?

It says anti-aliasing but doesn’t describe it!!!

7.3 Curved Objects

It’s hard to do this in a general case, but circles and ellipses are easy.

Use the midpoint algorithm to generate boundary points. Fill in with horizontal pixel spans, then use
symmetry.

64

7.4 Boundary Fill Algorithm

Start with an internal point (x, y), color it, check
neighbors for filled or border color. Recurse on valid
neighbors
However, it may make mistakes if parts of the space
were already filled with the fill color. It also requires
a huge stack size to keep track of all the recursion.

1: function BoundaryFill(x, y, fill, bound)
2: if Color(x, y) ≠ fill and Color(x, y) ≠ bound then
3: Color(x, y) := fill
4: BoundaryFill(x + 1, y, fill, bound)
5: BoundaryFill(x, y + 1, fill, bound)
6: BoundaryFill(x − 1, y, fill, bound)
7: BoundaryFill(x, y − 1, fill, bound)
8: end if
9: end function

65

8 Color

8.1 Vocab

Hue : The flavor of color we see. Red, green, blue, etc. Based on the dominant wavelengths

Saturation : How much of the flavor we see. Based on excitation purity

Lightness : Self reflecting objects. Based on luminance

Brightness : Self luminous objects. Based on luminance

8.2 Physics and Eyes

Electromagnetic spectrum

wavelengths

what do we percieve?

highest degree of sensitivity is also where sun is

8.3 Intensity

Achromatic : Light without color. Defined in terms of three types of energy, intensity, luminance, and
brightness

If we have a limited number of shades, how do we decide how to distribute them?

Bad Idea 1:
128 levels between 0.0 and 0.9
128 levels between 0.9 and 1.0
This creates discontinuities at 0.9 and an uneven dis-
tribution of samples

Bad Idea 2:
Distribute them evenly
This isn’t how the human eye works. It deals in rela-
tives, not absolutes (like a sith would). The intensity
change between 0.10 and 0.11 looks like the change
from 0.50 and 0.55 since they’re both 10%.

Good Idea : Start with I0, build up to I255 = 1

66

I0 = Given

I1 = rI0

I2 = rI1 = r
2
I0

... = ...

I255 = r
255
I0 = 1

r = (1

I0
)1/255 = I−1/2550

r
j
= I

−j/255
0

Ij = r
j
I0 = I

(1−j/255)
0 = I

(255−j)/255
0

r = (1

I0
)1/n

Ij = r
j
I0 = I

(n−j)/n
0

When selecting intensities, take into account the dynamic range of the device and choose a minimum intensity
such that its [1

500
, 1
200

] of the maximum.

Gamma Correction : Adjusting intensities to compensate for a device. This requires a look up table

I = v
γ

γ = 2 → 2.5

But how many intensities are enough? The human eye cannot see changes < 1%:

1.01 = (1

I0
)1/n

n = log1.01 (
1

I0
)

I0 =
1

200
n = 532

8.4 Physics Background

Tristimulus Theory : The human retina has three color sensors called cones. These cones are tuned to
red, green, and blue wavelengths.

67

Luminous Efficiency Function : The eye’s response to light of constant luminance as the dominant
wavelength is varied

Eyes can distinquish 100,000s of colors side by side. When the colors only differ in hue, colors are only
distinguishable when the wavelength difference is [2nm, 10nm], but most within 4nm. This means 128 fully
saturated hues can be distinguished. Less saturation makes us less sensitive to changes in hues. We are
more sensitive at spectrum extremes to changes in saturation. There are about 23 distinguishable saturation
grades.

8.5 Color Models

8.5.1 RGB

RGB is an additive model that defines colors in weighted sums of red, green, and blue. Some colors may
need values less than 0 to match the wavelengths, so some colors cannot be represented this way.

Primary colors are obviously red, green, and blue, which gives us the secondary colors:

• yellow = red + green

• cyan = green + blue

• magenta = red + blue

68

• white = red + green + blue

• black = none

RGB is primarily used in monitors and TVs and things that emit light

8.5.2 CMY(K)

On the flipside, CMYK describes a hard copy color output. Since it’s mostly used in printing ink, the colors
are reflected light. This makes CMYK a subtractive color model. For example cyan ink absorbs red light
and reflects green and blue. This gives the following secondary colors:

• blue = cyan + magenta

• red = magenta + yellow

• green = cyan + yellow

• black (theory) = cyan + magenta + yellow

– In practice, black is it’s own ink instead of wasting and mixing all three

• white = no ink

8.5.3 XYZ

This isn’t actually real colors here. It’s a standard defined by the International Commission on Illumination
(CIE) in 1931 to avoid negative weights.

69

X = ∫ P (λ)x̄λdλ

Y = ∫ P (λ)ȳλdλ

Z = ∫ P (λ)z̄λdλ

We can create a cone of visible colors in CIE space as shown on the X + Y + Z = 1 plane. Since there is
constant luminance, it only depends on wavelength and saturation.

We can plot colors on this X + Y + Z = 1 plane and normalize by brightness to get the CIE chromaticity
diagram

X =
X

X + Y + Z

Y =
Y

X + Y + Z

Z =
Z

X + Y + Z

To use this diagram:

• C is “white” and close to x = y = z = 1
3

• E and F can be mixed to produce any color along the line EF

• Dominant wavelength of B is where the line from C through B meets the spectrum (D)

• BC
DC

gives the saturation

• A and B are complementary colors and combine to form white light

• Colors inside ijk are linear combinations of i, j, and k

70

8.5.4 YIQ

This one was developed by the National Television System Committeee (NTSC)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y
I
Q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.299 0.587 0.114
0.596 −0.275 −0.321
0.212 −0.528 0.311

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

R
G
B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y is the same as the XYZ model and represents brightness. It uses 4MHz of bandwidth. This is the only
signal black and white TVs use.

I contains the orange-cyan hue information (skin tones) and uses about 1.5MHz of bandwidth.

Q contains the green-magenta hue information. It also uses about 1.5MHz of bandwidth.

8.5.5 HS[B—V] and HSL

Both use a relationship of tints, shades, and tones

Tints : Mixture of a color with white

Shades : Mixture of a color with black

Tones : Mixture of a color with white and black

71

HS[B—V] : Hue, Saturation, Brightness/Value
Hue is the actual color measured in degrees around the
cone

• red = 0 = 360

• yellow = 60

• green = 120

• ...

Saturation is the purity of the color, measured in per-
cent from the center of the cone. 0% is white and hue
is meaningless. 100% will give a pure shade of the
color.
Brightness is also measured in percent. It’s measured
from the tip of the cone. At 0% brightness, neither
hue nor saturation matter. At 100% bright, we have a
pure tint of the color.

HS[B—V] : Hue, Saturation, Lightness
Hue is defned the same as in HSB with complimentary
colors 180 degrees apart.
Saturation once again the same as the HSB model with
the percentage from the center.
Lightness is now a gray scale accross the axis from 0,
pure white, to 1, pure black. Pure hues now lie where
L = 0.5.
It’s like we took the HSB model, duplicated it and
changed the black to white, then flipped it over and
combined the two

72

9 Solid Modeling

Now, we’re gonna introduce a mathematical theory of a solid shape. This theory includes the following
components:

• A domain of objects

• Each object has a clearly defined inside and outside

• A set of operations on the domain

• Unambigious, accurate, unique, compact, and efficient representation

Solids : A set of points defined as interiors and boundaries

Boundary Points : Points where the distance to the object and it’s complement is zero

Interior Points : All other points in the set

Closure : Union of interior and boundary points (another word for solid)

Overlapping Solids Union Intersection Set Difference Set Difference
A and B A ∪B A ∩B A/B B/A

By performing these operations on 3D objects, we can also creat “non-3D objects” or objects with non-
uniform dimensions. Objects need to be regularized.

Regularization : Taking the closure of the interior

Input Set Closure Interior Regularized

Another example:

Input Set Intersect Regularized

73

9.1 Constructive Solid Geometry (CSG)

CSG : A tree structure combining primitives via regularized operations

It can also be represented as a topologically sorted DAG

Issues:

• Non Uniqueness : More than one way to build the same model

• Primitive Choice : Minor changes in the primitives can drastically change a model

• Simple Models : How would we sculpt surfaces? or deform them?

Benefits:

• Found in basically every CAD system

• Elegant, conceptually and algorithmically appealing

• Good for:

– Rendering

– Ray Tracing

– Simulation

– BRL CAD

Then to evaluate points on the surface of a CSG:

1. Compute points on the surfaces of the primitives

2. Test if points will be on the surface of the evaluated CSG model

3. Use rules based on the inside outside status of the points

74

4. Display valid points

Rules:

A ∪B Aboundary ∧ (¬Binterior)
Bboundary ∧ (¬Ainterior)

A ∩B Aboundary ∧ (Binterior ∨Bboundary)
Bboundary ∧ (Ainterior ∨Aboundary)

A/B Aboundary ∧ (¬Binterior)
Bboundary ∧ (Ainterior ∨Aboundary)

B/A Aboundary ∧ (Binterior ∨Bboundary)
Bboundary ∧ (¬Ainterior)

Union Intersection Difference

75

10 3D Viewing

10.1 Projection

Similar to clipping 2D objects to fit a window, we can’t display 3D objects entirely on a screen. How do we
project a 3D object onto a 2D plane to display it.

The general process for 3D viewing is as follows:

1. Clip the 3D world coordinates and output primitves against the view volume

2. Project the clipped world coordinates onto the projection plane

3. Transform the projection plane into the viewpoint 2D coordinates for displaying

10.1.1 Planar Geometric Projections

Perspective Projection
Similar to a photograph, there’s a single viewing loca-
tion that rays intersect with

Parallel Projection
The viewing location is at ∞ and it’s good for captur-
ing shape and dimensions.

76

10.2 Perspective Projections

Vanishing Point : The point at which all viewing rays converge to. These lines are not parallel to the
projection plane

In addition to a single perpespective point, we can cut two axis at the same time with two vanishing points.

Now how do we actually compute this?

Given point P , we can project it onto a plane as point PP using similar triangles.

77

Assuming that the projection normal is the z-axis:
x Direction Ratio : z

d
=

x
xp

y Direction Ratio : z
d
=

y

ybp

xp =
x

z/d
yp =

y

z/d

Mp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0

0 0 1
d

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

10.3 Parallel Projections

Orthographic Projections : Projection direction vector and projection plane normal are the same vectors

These are primarily used for engineer diagrams. These are good for keeping the dimensions of a model and
faces of a model.

There are three 3 axonometric orthogonal projections for each x, y, and z axis. There are 8 isometric
projections for each octant where the angles to each axis are equal.

Mort =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

78

Oblique Projections : Projection direction vector and projection plane normal are different vectors

This preserves certain angles and distances. These are better for illustrations and movement.

Cavalier : All lines are their true lengths (middle)

Cabinet : Receding lines are shorted by one-half of their true length to approximate perspective foreshort-
ening (right)

10.4 Scanline Rendering

Ray Tracing : Cast a ray for every pixel and see what geometry it intersects

Rasterization : Examine every triangle and see which pixels it covers

When choosing the color of the pixel to fill, we have options:

79

Input Dominant Triangle Average Color Pixel Center

When using scanline rendering for rasterization, the process is exactly the same for 2D objects and finding
the pixels of best match based on vertices.

Supersamping : Using the scanline algorithm a bunch of times to get an average picture

10.5 Back Face Culling

Since drawing all these triangles can get heavy and sometimes, not all of them are necessary, we use back-face
culling to cut down on unnecessary shapes.

Assumptions for running this process:

• Object approximated as closed polyhedron

• Polyhedron interior is not exposed by the front cutting plane

• The eye pint is not inside the object

• Right hand vertex ordering defines a normal outside

Recall the normal N of a triangle {p0, p1.p2} is:

N =
(p1 − p0)(p2 − p0)

∣∣(p1 − p0)(p2 − p0)∣∣

Then, the process goes as follows:

1: function BackFaceCulling
2: Perform canonical transformation
3: Examine the normal to the face Nk = (xk, yk, zk)
4: // This is the only test necessary for single convex polyhedrons
5: // More general cases compare Nk ◦ V
6: if zk >= 0 then
7: Draw the face
8: else
9: Face is a Back-Face, do not draw

10: end if
11: end function

80

10.6 Z-Buffering

Z buffering, also called depth buffering, is a visible surface detection algorith. It’s very simple, assuming we
have the polygons rasterized pixels. We just walk through the pixels, and draw them if they’re in front of
the pixel already on the screen.

1: function ZBuffer
2: for y := 0 → YMAX do
3: for x := 0 → XMAX do
4: F [x][y] := BACKGROUNDCOLOR
5: Z[x][y] := ZMIN
6: end for
7: end for
8: for ∀ polygons Pi do
9: for ∀ pixels pi ∈ Pi do

10: pz := z value of pi
11: if pz > Z[x][y] then // New pixel is closer
12: F [x][y] := Color(pi)
13: Z[x][y] := pz
14: end if
15: end for
16: end for
17: end function

1: function ZBuffer-FrontBackClipping
2: for y := 0 → YMAX do
3: for x := 0 → XMAX do
4: F [x][y] := BACKGROUNDCOLOR
5: Z[x][y] := −1
6: end for
7: end for
8: for ∀ polygons Pi do
9: for ∀ pixels pi ∈ Pi do

10: pz := z value of pi
11: if pz > Z[x][y] and pz < FRONT then
12: // New pixel is closer and behind front plane
13: F [x][y] := Color(pi)
14: Z[x][y] := pz
15: end if
16: end for
17: end for
18: end function

Z Interpolation : Simplify the calcuation of z by exploiting the fact a triangle is planar. Two parts:

1. Interpolate z values along the edges

81

2. Interpolate z values along the scan line

Three Special Cases:

• Horizontal edge

• Degenerate triangle

• Single point

10.7 Depth Cueing

Objects that are farther away are darker, objects that are closer are brighter.

Color
′
= Color

z − far
near − far

10.8 Ray Tracing

Also called Ray Casting. This determines the visible surface by tracing rays of light from the viewers eye to
the objects. This allows for more rendering like reflections and such.

1: function RayTracing
2: for ∀ scanlines s ∈ S do
3: for ∀ pixels p ∈ s do
4: Find a ray from the center of the projections through the pixel
5: Co := The closest object in the scene
6: Cl := The location of the intersection with the closest object
7: for ∀ objects o ∈ O do
8: if o is closer than Co then
9: Co := o

10: Cl := The location of the intersection with o
11: end if
12: end for
13: Color(p) := Color(Co[Cl]
14: end for
15: end for
16: end function

82

To actually compute this, we call the center of project (x0, y0, z0) and the point on the window (x1, y1, z1)
to get the following from the parametric equation of a line:

x = x0 + t∆x

y = y0 + t∆y

z = z0 + t∆z

Intersection : Sphere

r
2
= (x − a)2 + (y − b)2 + (z − c)2

r
2
= (x0 + t∆x − a)2 + (y0 + t∆y − b)2 + (z0 + t∆z − c)2

0 = (x0 + t∆x − a)2 + (y0 + t∆y − b)2 + (z0 + t∆z − c)2 − r2

0 = (∆x2 +∆y
2
+∆z

2)t2 + (∆x(x0 − a) +∆y(y0 − b) +∆z(z0 − a))2t + (x0 − a)2 + (y0 − b)2 + (z0 − c)2 − r2

Since the equation (albeit messy) is quadratic in terms of t, we can solve it with the quadratic formula and
get the following cases:

• No real roots: No intersections

• One real root: Ray grazes the sphere

• Two real roots: Two points of intersection

Intersection : Polygon

0 = Ax +By + Cz +D Plane of intersection

t = −
Ax0 +By0 + Cz0 +D
A∆x +B∆y + C∆z

Substitution

If the denominator is 0, the ray is parallel to the plane. Otherwise, project the polygon and point ortho-
graphically on the coordinate plane, then perform the point on Polygon test.

83

The actual ray tracing comes from when there are reflections and shadows and transparencies and refractions
to take into account.

To measure refraction:

Snell’s Law : ηi sin θi = ηt sin θt

η =
ηi
ηt

η =
sin θi
sin θt

m =
n cos θi − i

sin θi

cos θt =
√

1 − sin2 θt

cos θt =
√

1 − η2 sin2 θt

t = m sin θt − n cos θt

=
sin θt
sin θi

(n cos θi − i) − n cos θt

= n(η cos θt − cos θt) − iη

t = n(niη −
√

1 − η2(1 − (ni)2)) − iη

84

	Math Review
	Vectors, Points, Scalars
	Operations

	Matrixes
	Operations

	Calculus
	Derivatives
	Partial Derivatives

	Combinatorics

	Graphics Basic Vocab
	Curves
	Fuctional Representations
	Explicit Functions
	Implicit Functions
	Parametric Functions
	Comparisions
	Points and Curves
	Convex Hulls

	Parametric Curves
	Mathematical Definition

	Continuity
	Bézier Curves
	Bernstein Polynomials
	General Form
	Properties
	Issues

	Hermite Curves
	Algebraic Form
	Blending/Basis Curves
	Matrix Form
	Hermite and Bézier

	Catmull-Rom Splines
	Tension

	B-Splines
	Knots
	Drawing a Line
	Properties

	NURBS
	Weights

	Drawing Parametic Curves
	de Casteljau Algorithm
	Linear Interpolations
	Drawing a Line
	Observations

	Subdivisions
	Recursive Subdivisions

	Bézier Curves
	NURB Conic-Sections
	Knot Insertion
	Properties

	de Boor Algorithm
	Oslo Algorithm
	Barycentric Coordinates

	Surfaces
	Exact vs Approximation
	Wireframes
	Surface Models
	Biparametric Surfaces
	Bicubic Surfaces
	Bicubic Bézier Patches
	Surface Normals

	B-Spline Surfaces
	Surfaces of Revolution
	Drawing Parametic Surfaces
	Object Space Conversion
	Image Space Conversion
	Silhouette Rays

	Clipping
	Scissor Clipping
	Cohen-Sutherland Line Clipping
	Cyrus Beck Technique
	Polygon Clipping
	Sutherland-Hodgman Algorithm
	Weiler-Atherton Algorithm
	Intersection
	Union

	Filling
	Rectangles
	Polygons
	Curved Objects
	Boundary Fill Algorithm

	Color
	Vocab
	Physics and Eyes
	Intensity
	Physics Background
	Color Models
	RedRForestGreenGMidnightBlueB
	CyanCMagentaMDandelionY(K)
	XYZ
	YIQ
	HS[B|V] and HSL

	Solid Modeling
	Constructive Solid Geometry (CSG)

	3D Viewing
	Projection
	Planar Geometric Projections

	Perspective Projections
	Parallel Projections
	Scanline Rendering
	Back Face Culling
	Z-Buffering
	Depth Cueing
	Ray Tracing

