
CS-303 : Notes

Charlie Stuart : src322

Winter 2021

Section headers with (M-X.X) refer to Mobius modules sections X.X

Contents

1 Course Calendar 4

2 Functions 5

3 Fast Powering (M-3.2) 6

4 Modular Arithmetic (M-3.2) 7

4.1 Divisibility (M-2.2) . 7

4.2 Equivalence Classes . 7

4.3 Representation . 8

4.4 Euler Phi Function . 8

4.4.1 Euler’s Theorem . 8

4.5 Inverses . 9

4.6 Matrices . 9

4.7 Rings (M-5.1) . 9

4.7.1 Fields (M-7.1) . 10

5 Psuedoprime numbers 11

5.1 Fermat Psuedoprimes . 11

5.2 Miler-Rabin Primality Test . 11

5.3 Prime Number Theorem . 11

6 PreModern Ciphers (M-1.1, 1.2, 2.1) 12

6.1 Caesar Cipher . 12

6.1.1 Attacking . 12

6.1.2 Affine Cyphers . 12

6.2 Substitution Cipher . 12

1

6.3 One Time Pad . 12

6.4 Vigenere Cypher . 12

7 Euclidian Algorithm (M-3.1) 14

7.1 Diophantine Equations . 14

7.2 Extended Euclidian Algorithm . 14

8 Chinese Remainder Theorem (M-5.1) 16

8.1 Proof . 16

8.2 Constructive . 16

8.3 Solving Two Congruences . 17

8.4 Solving With a Summation . 17

9 RSA Encryption (M-4.2) 19

9.1 Breaking with Chinese Remainder (M-5.1) . 19

9.2 Signatures (M-5.2) . 20

9.3 Man-In-The-Middle Attacks (M-6.1) . 20

10 Post-Midterm Math 21

10.1 Primitive Roots (M-7.1) . 21

10.2 Quadratic Residues (M-7.1) . 21

10.3 Euler’s Criterion . 22

10.3.1 Legendre Symbols . 22

10.3.2 Jacobi Symbol . 23

10.3.3 Finding Quadratic Roots . 24

10.3.4 Tonelli-Shanks Algorithm . 24

10.4 Birthday Paradox . 25

11 Goldwasser-Micali Encryption (M-7.2) 26

11.1 Part 1 : Key Generation . 26

11.2 Part 2 : Message Encryption . 26

11.3 Part 3 : Message Decryption . 26

12 Discrete Logarithm Problems (M-7.2, 8.2) 27

12.1 Brute Force . 27

12.2 Shanks Algorithm . 27

13 ElGamal Encryption (M-8.1) 28

13.1 Key Generation . 28

13.2 Encryption . 28

13.3 Decryption . 28

13.4 With Digital Signatures . 29

2

14 Blum Algorithm (M-9.1) 30

14.1 Blum Coin Flipping Protocol . 30

14.2 Coin Flipping with RSA . 30

15 Quantum Computing 31

15.1 Factoring . 31

15.1.1 Fermats Algorithm . 31

15.1.2 Pollard p-1 . 31

15.1.3 Quadratic Sieve . 31

15.1.4 Shor’s . 31

15.2 Qubits . 31

3

1 Course Calendar

What material was covered in what assignments?

Assignment 1 : Index of Coincidence, Vigenere Cypher
Assignment 2 : Modular Matrices, Ring Properties, Modular Domains, RSA Tracing and Imple-
mentation, Chrem and RSA
Assignment 3 : Square Roots Mod P, Tonelli-Shanks Implementation, Chrem and Modular Square
Roots, Goldwasser Micali Implementation
Assignment 4 : Blum Coin Flipping Protocol
Lab 1 : Learn Maple
Lab 2 : Diophantine Equations, GCD, EEA, Modular Arithmetic
Lab 3 : Modular Inverses, Modular Arithmetic, Affine Cyphers
Lab 4 : GCD, Euler Phi
Lab 5 : Modular Numbers, Euler Phi
Lab 6 : Chinese Remainder Theorem, Fast Powering
Lab 7 : Psuedoprimes, Rabin-Miller Primality,
Lab 8 : Primitive Roots, DLP, Jacobi/Legendre Symbols,
Lab 9 : Birthday Collision, Shanks Babystep-Giant Step
Lab 10 : ElGamal Implementation, Blum Coin Flipping Analysis
Quiz 1P : Logs and Lists in Maple
Quiz 1R : GCD Recursive, Number Theory Proof
Quiz 2P : Chinese Remainder Problem
Quiz 2R : Euler Phi, Breaking RSA
Quiz 3P : RSA Man-In-The-Middle Attacks, RSA Signatures, Rabin-Miller Analysis, Goldwasser-
Micali Analysis, Quadratic Residues
Quiz 3R : Quadratic Residues and Symmetric, ElGamal Analysis
Quiz 4P : Tonelli-Shanks Analysis, Quadratic Residues, DLP
Quiz 4R : Factoring Analysis, Blum Coin Flipping Protocol

4

2 Functions

N : Set of natural numbers
Z : Set of integers
Q : Set of rational numbers
A : Set of algebraic numbers
R : Set of real numbers

Domain : Input to a function
Range : Output of a function

1-1 : Every item in the domain produces a unique result
Onto : Every item in the range of the function can be produced by some element in the domain

Injection : A function that is 1-1, not necessarily onto
Bijection : A function that is 1-1 and onto
Surjection : A function that is onto, not necessarily 1-1

Injection Bijection Surjection

Summation : Uses
∑

, the addition of multiple elements
Pi Notation : Uses

∏
, like summation but with multiplication

5

3 Fast Powering (M-3.2)

A lot in crypto the operation ap mod m is computed. For secrity, ap can be massive and hard to
compute. Fast powering is a recursive algorithm that reduces the number and complexity of the
operations. The following is the fast powering algorithm/function

f =

{
(xn/2)2 n is even

x ∗ (x(n−1)/2)2 n is odd

This just breaks it down into many x2 ∗ x2∗ etc etc etc

In Maple:

FP := proc(x, b)

if b = 0 then: return 1:

else if b = 1 then: return x:

else if b = 2 then: return x*x:

else if x mod 2 = 0 then:

return FP(x, b/2) ^ 2:

else if x mod 2 = 1 then:

return FP(x, b/2) ^ 2 * x:

end if:

end proc:

6

4 Modular Arithmetic (M-3.2)

Some arithmetic

(x ∗ y) mod z = (x mod z) ∗ (y mod z)

(x+ y) mod z = ((x mod z) + (y mod z)) mod z

Fermat’s Theorem: Given a prime number p and and a where gcd(a, p) = 1 then ap−1 = 1
mod p and ap = a mod p for all a and also ap−2 is the multiplicative inverse of a in Zp

4.1 Divisibility (M-2.2)

(You know this, it’s just new symbols that are confusing you)

b is divisible by a when b%a = 0 this can be written as a | b
For any integer m, 1 | m and m | m
a ≡ b mod n means n | (b− a) which also means there is a q where a = qn+ b

Properties :

• Reflexive: a ≡ a mod n

• Symmetric: (a ≡ b mod n) =⇒ (b ≡ a mod n)

• Transitive: ((a ≡ b mod n) and (b ≡ c mod n)) =⇒ (a ≡ c mod n)

4.2 Equivalence Classes

The groups that a mod breaks a set of numbers into. So 5 has five equivalence classes, 0 mod 5, 1
mod 5, 2 mod 5. 3 mod 5, and 4 mod 5. They are the following.

First 0 mod 5 {−10,−5, 0, 5, 10}
Second 1 mod 5 {−9,−4, 1, 6, 11}
Third 2 mod 5 {−8,−3, 2, 7, 12}
Fourth 3 mod 5 {−7,−2, 3, 8, 13}
Fifth 4 mod 5 {−6,−1, 4, 9, 14}

The notation is as following

[a] = {x : x = a mod n} = {a+ qn | q ∈ Z}

Then. going back to the arithmetic above

[a] + [b] = [a+ b]

[a] ∗ [b] = [ab]

7

Since mods are sets, commonly we use a ≡ b mod m which is true iff m is divisible by a− b

4.3 Representation

Two forms of representation:

Positive Representation : Only positive values 0...m− 1. In Maple, use mod or modp(i,m)

Symmetric Representation : Includes negative valuesm/2...m/2 (kinda). In Maple, usemods(i,m)

Both have the same number of values in their representation, and both are circular.

When m = 5

i modp mods
-5 0 0
-4 1 1
-3 2 2
-2 3 -2
-1 4 -1
0 0 0
1 1 1
2 2 2
3 3 -2
4 4 -1
5 0 0

4.4 Euler Phi Function

Phi is also called the totient function. φ(n) is number the values between 1 and n that are coprime
with n.

If n is prime, then φ(n) = n− 1

Some fun properties:

Given a and b are relatively prime: φ(a ∗ b) = φ(a) ∗ φ(b) (1)

4.4.1 Euler’s Theorem

Given an a and m where gcd(a,m) = 1, then the following is true:

aφ(m) = 1 mod m

a ∗ aφ(m)−1 = 1 mod m

aφ(m)−1 ∈ a−1

Since aφ(m)−1 mod m can be computed through fast powering, we can use it as the representation
for multiplicative inverses

8

4.5 Inverses

The modular inverse is also called the multiplicative inverse.

In the domain of Zm, the multiplicative inverse of a is b where a ∗ b = 1.

Not all elements in Zm have inverses. a has an inverse in Zm iff gcd(a,m) = 1

If m is prime, then all non-zero elements have inverses. If m is not prime, then φ(n) elements have
inverses in Zm
If integers a and b are relatively prime, then a has an inverse in Zb

4.6 Matrices

So we’re going back to linear algebra. So quick, given the following matrix, we can do a bunch of
different things with it. [

a b
c d

]
Determinant : A special number for square matrices. Used in finding the inverse in our context
here. Given the above 2x2 matrix, the determinant is calculated by ad− bc
Modular : We can make this modular now by doing the following:[

a b
c d

]
mod m

The new determinant is ad− bc mod m.

Identity Matrix : A matrix where all values are 0 except for the top left to bottom right diagonal,
which are 1s.

Inverses : The inverse of a matrix A is when A ∗A−1 creates the identity matrix. The inverse can
be found even when taking the modulus of a matrix.

Given that the determinant of matrix A mod m is d and d and m are coprime (gcd of 1), then an
A−1 mod m exists where A ∗A−1 mod m creates an identity matrix.

4.7 Rings (M-5.1)

Ring : A set of elements R where 0, 1 ∈ R and has the following properties

Additive Identity : ∀x ∈ Zm, 0 + x = x

Multiplicative Identity : ∀x ∈ Zm, 1 ∗ x = x

Additive Inverse : x and y are additive inverses if x, y ∈ Zm, x+ y = 0

• There is an addition like operation that is commutative (a+ b = b+ a)

• There is a multiplication like operation that is associative (ab ∗ c = a ∗ bc)

• Is distributive over addition (ab+ ac = a(b+ c))

• There is a multiplicative identity element (ab = ba = 1)

9

Z is a ring which means Zx where x is an integer is a ring

x+ y ∈ Z4

+ a b c d
a a b c d
b b c d a
c c d a b
d d a b c

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

x ∗ y ∈ Z4

* a b c d
a a a a a
b a b c d
c a c b c
d a d c b

* 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 1 2
3 0 3 2 1

4.7.1 Fields (M-7.1)

Fields : Rings where all non-zero elements are units

Unit : A element with an inverse

Finite Field : A field with a finite set of elements

F is a field when:

• F has a set of elements where operations + and * are defined and F is closed under those
operations

• F has an additive identity and multiplicative identity (often written as 0 and 1). Distributive
law still holds: ∀a, b, c ∈ F, a(b+ c) = ab+ ac

• F is a commutative ring

• Quotient and remainder work in F

• All non-zero elements have a unit ∀x 6= 0 ∈ F∃y ∈ F such that xy = 1

Z5 is a field. Z6 is not a field. If p is prime, then Zp is a field.

10

5 Psuedoprime numbers

Psuedoprimes, also called probably primes, are numbers that is not actually prime, but shares
properties with prime numbers. Classified based on which prime numbers they share properties
with.

5.1 Fermat Psuedoprimes

(see Fermats theorem above). Given Fermats theorem, given prime p and coprime a, then ap−1− 1
is divisible by p. For an integer a > 1, if a not prime (composite) integer x, and ax−1−1 is divisible
by x, then x is psuedoprime to the base a.

5.2 Miler-Rabin Primality Test

It tests whether a given number is likely to be prime or not. These are called strong probable
primes. This one has a lot of letters, don’t get too confused.

Given a number n that is an odd integer > 2, then n = 2s ∗ d+ 1, where s and d are both positive,
and d is odd.

Considering a base a where 0 < a < n, then n is a strong probable prime to a if one of the two
following hold.

ad ≡ 1 mod n

a2
r∗d ≡ −1 mod n where 0 ≤ r < s

This is both because of Fermats Theorem, and because the only square roots of 1 mod n are 1 and
-1.

The Miller-Rabin Primality Test is 75% accurate in finding if a number is composite, and will fail
to find if a number is composite 25% of the time.

5.3 Prime Number Theorem

Let π(X) be the number of primes p where 2 ≤ p ≤ X then

lim
X→∞

(
π(X)
X

ln(X)

) = 1

In not math human terms, as X approaches infinity, the number of primes between 2 and X over
the natural log of X is 1, which means they’re basically the same. I don’t understand what the
natural log means.

Wikipedia says, for large enough X, the probability that a random integer not greater than X is
prime is very close to 1/ log(X)

So basically, this limit tells me, if I grab an integer less than X, how likely is that number to be
prime.

11

6 PreModern Ciphers (M-1.1, 1.2, 2.1)

6.1 Caesar Cipher

Shift cipher

All that’s needed to break is the shift number. Can be found finding the most frequent letter and
substituting with e

Alphabet A B C ... X Y Z
Encypted F G H ... C D E

6.1.1 Attacking

Since it is known that the shift cipher is being used, all that is needed is the shift value which is
between 0 and n− 1 where n is the length of the alphabet.

Chosen Plaintext : After getting “special messages” m1, m2, m3, and m4, encrypt “A” (compute
σ(“A”)) which finds the shift for all letters. 1 + n = c mod 26

Chosen Cyphertext : Decrypt “A” (compute σ−1(“A”)) m+ n = 1 mod 26

Cyphertest Only : Given encrypted message c1, c2, and c3 figure out σ and σ−1 and the keys
being used.

Brute Force : Test all n since n is small

6.1.2 Affine Cyphers

An affine cypher is a generalization of a ceaser cypher. In an alphabet of n elements and a key k,
then E(m) = m+ k mod n

Given an a where gcd(a, n) = 1 (a and n are coprime), then an affine cypher with the key (a, k)
encrypts using the following function: E(m) = am+ k mod n

6.2 Substitution Cipher

Alphabet A B C ... X Y Z
Encypted Z Q A ... R T Y

Permutation of letters

Needs the full map to break. Given an alphabet of n characters, there are n! possible combinations

6.3 One Time Pad

Easy, we know this from CS164. Given a message m and a key k, then E(m) = m XOR k and
D(m) = E(m) XOR k

6.4 Vigenere Cypher

A polyalphabetic shift where, with each letter I send, I use a different shift. No long brute forcable.
n! possible different shifts for an alphabet of n characters.

12

Given the above key table of shifts where the column is a letter from the key code and row is the
plain text letter, the key code of “GAY”, and the plain text phrase, “IAMCHARLIE” is encrypted
to be “OAKIHYXLGK”. See the table below for a breakdown. As you can see, “I” was encoded as
both “O” and “G” depending on the shift. Frequency analysis is impossible now.

Plain Text Key Letter Result
I G O
A A A
M Y K
C G I
H A H

While not a Vigenere cypher, a polyalphabetic substitution cypher is possible where there is a
sequence of substitutions. Now, given an alphabet of n characters and a plaintext message of
length m, there are n!length(m) possible sequences of substitutions. The key in this situation assigns
each substitution group an integer between 1 and 26!, then that string of integers is applied to each
respective plain text character.

13

7 Euclidian Algorithm (M-3.1)

An algorithm for finding the greatest common divisors of two integers a and b. It works by com-
puting a remainder sequence as follows

r0 ← a

r1 ← b

r2 ← r0%r1

r3 ← r1%r2

......

rn−1 ← gcd(a, b)

rn ← 0

7.1 Diophantine Equations

Diophantine Equation : An equation where all the knowns and unknowns are integers

Given a modulus m and a number a ∈ Zm, we want to find a t such that at ≡ 1 mod m. We could
brute force, but that takes too long. We know that t is the inverse of a, so to find this inverse, we
need to find a u and v where au+mv = 1

Since there are two unknowns, one equation, and only integers allowed, there may be 0 or many
solutions to any equation. 4u+ 2v = 1 has no solutions while 5u+ 2v = 1 has many.

7.2 Extended Euclidian Algorithm

The Extended Euclidian Algorithm (EEA) computes answers to the previous diophantine equations.
In addition to the previous remainder sequence, other sequences are produced.

i q r s t
0 r0 ← a s0 ← 1 t0 ← 0
1 q1 ← r0/r1 r1 ← b s1 ← 0 t1 ← 1
2 q2 ← r1/r2 r2 ← r0 − q1r1 s2 ← s0 − q1s1 t2 ← t0 − q1t1
...
i qi ← ri−1/ri ri ← ri−2 − qi−1ri−1 si ← si−2 − qi−1si−1 ti ← ti−2 − qi−1ti−1
...
n− 1 rn−1 ← gcd(a, b) sn−1 ← u tn−1 ← v
n rn ← 0

This process is stopped when rn = 0. In this case, the results rn−1, sn−1, and tn−1 are relevant as
they are the solutions as follows:

14

a(sn−1) + b(tn−1) = rn−1

au+ bv = gcd(a, b)

Now applying this to what we’re doing with modular arithmetic. Suppose we have some a < m
where gcd(a,m) = 1. Given that u and v are solutions to au + vm = 1, then u ≡ a−1 mod m
which means that u is the inverse of a in Zm.

15

8 Chinese Remainder Theorem (M-5.1)

Given moduli m and n where gcd(m,n) = 1, and residues a and b, there exists an integer x that
solves:

x ≡ a mod m

x ≡ b mod n

8.1 Proof

Consider the map x→ (x mod m,x mod n)

This map is a 1-1 map from Zmn to Zm × Zn, since if x and y map to the same pair, then x ≡ y
mod m and x ≡ y mod n. Since gcd(m,n) = 1, this implies that x ≡ y mod mn

Since there are mn elements in both Zmn and Zm × Zn, the map is also onto. This means every
pair (a, b) we can find the desired x

Another Way:

Let Zm×Zn denote the set of pairs (a, b) where a ∈ Zm and b ∈ Zn. We can perform the following
arithmetic on Zm × Zn by performing componentwise modular arithmetic.

(a, b) + (c, d) = (a+ b, c+ d)

(a, b)(c, d) = (ac, bd)

From there, we can get:

(ac mod m, bd mod n) = (a mod m, b mod n)(c mod m, d mod n)

(a+ c mod m, b+ d mod n) = (a mod m, b mod n) + (c mod m, d mod n)

For every pair (a, b) there is an integer x where x mod m,x mod n) = (a, b)

8.2 Constructive

If gcd(m,n) = 1 there exists em and en such that:

em ≡ 1 mod m

em ≡ 0 mod n

en ≡ 0 mod m

en ≡ 1 mod n

16

This follows that aem + ben ≡ a mod m ≡ b mod n

Since gcd(m,n) = 1, the EEA says there’s an x and y for my + ny = 1. Just set em = ny and
en = mx

8.3 Solving Two Congruences

So given the following example:

x ≡ 2 mod 3

x ≡ 3 mod 8

We do the following to solve this congruence:

x ≡ 3 mod 8

x = 8j + 3 Convert congruence into equivalent equation

8j + 3 ≡ 2 mod 3 Set that equation equal to the other congruence

j ≡ 1 mod 3 Solve for j

j = 3k + 1 Convert congruence into equivalent equation

x = 8(3k + 1) + 3 Substitute j in x equation

x = 24k + 11 Solve

x ≡ 11 mod 24 Convert to congruence

This final congruence is the combination of the two given, it’s solution solves both the others.

8.4 Solving With a Summation

While we didn’t learn this in class, I think it’s pretty great so I’m gonna talk about it

Just a summation to solve for x given many moduli and residues. Given the following where all r
are integers and all m are coprime and positive integers:

x ≡ r1 mod m1

x ≡ r2 mod m2

......

x ≡ rn mod mn

To solve this, we compute the following:

17

M = m1 ∗m2 ∗ ... ∗mn The product of all moduli

Mi = M/mi M divided by the current moduli

si = M−1i mod mi Using EEA, the inverse of Mi in mi

Then we can plug this into the following summation:

x =

n∑
i=1

riMisi

From here, x may need to be modded by M .

18

9 RSA Encryption (M-4.2)

The general process is as follows.

1. Choose random large prime numbers p and q. These are secret

2. Calculate n = pq

3. Calculate φ(n) = (p− 1)(q − 1)

4. Public Key : Choose an integer e such that 1 < e < φ(n) and gcd(e, φ(n)) = 1

5. Private Key : Choose an integer d such that de ≡ 1 mod φ(n)

Public : n, e

Private : p, q, d

Every person has their own set of n, e, and d. For Alice to send a message to Bob, Alice encrypts
her message with nb and eb so that only Bob can decrypt it with his db.

This is then encrypted by doing c = Meb mod nb so that Bob can compute M = cdb mod nb

9.1 Breaking with Chinese Remainder (M-5.1)

Given a plain text message M , if we can prove that Med mod p = M mod p and Med mod q = M
mod q, then we can use the CRT on these two equations.

Given the following known information:

n = pq RSA Calculation

φ(n) = (p− 1)(q − 1) Euler Phi product rule

ed ≡ 1 mod φ(n) RSA Calculation

ed = kφ(n) + 1 Modular equation

ap ≡ a mod p Little Fermat

We can do the following process to prove Med mod p = M mod p:

Med mod p

Mkφ(n)+1 mod p Using modular equivalent equation

Mkφ(n) ∗M mod p Exponent arithmetic

Mk(p−1)(q−1) ∗M mod p Euler Phi product rule

M (p−1)k(q−1)

∗M mod p Exponent arithmetic

1k(q−1) ∗M mod p Little Fermats

M mod p 1 to any power is 1

19

Now CRT can be applied to the following equations to find Med mod pq = M

Med mod p = M mod p

Med mod q = M mod q

9.2 Signatures (M-5.2)

Signatures are a unique identifier to verify the sender of a message. Digital signatures are extra
information in a message to verify the sender.

So let’s say Alice wants to send another message to Bob, but in a way so he can verify it’s from
her. She will do the following:

Ms = Mda mod na Encrypt with her private info

Mc = Meb
s mod nb Encrypt with Bob’s public info

So that Bob can do the following:

Ms = Mdb
c mod nb Decrypt with his private info

M = Mea
s mod na Decrypt with Alice’s public info

Assuming there were no attacks:

• Anyone can decrypt Alice’s signature, since ea and na are public and used to decrypt

• Only Alice can encrypt her signature, since da is private and used to encrypt

• Anyone can send Bob an encrypted message, since eb and nb are public and used to encrypt

• Only Bob can decrypt messages sent to him, since db is private and used to decrypt

So first encrypting the messages with Alices signature, which only she can encrypt, then encrypting
the message with Bobs information (which anyone can encrypt). Bob then can be the only person
to decrypt the message, then can ensure that only Alice could have sent her signature.

9.3 Man-In-The-Middle Attacks (M-6.1)

When Alice is encrypting a message to send to Bob, there is a person in the middle, Eve, who
is catching the messages before they reach Bob, decrypting them, then sending either the same
message, or new messages to Bob.

The process (simplified) can go as follows:

20

1. Alice sends Bob a message m1, Eve intecepts

2. Eve sends a message to Alice “Please give me your public key info”.

3. Alice, assuming she is talking to Bob, sends her na and ea.

4. Eve sends the same message to Bob to get his nb and eb.

5. Eve sends them both their ne and ee pretending it is Alice/Bobs respective public keys

6. Eve now can intercept the messages, and also send new messages to Alice and Bob without
either of them being suspicious

10 Post-Midterm Math

10.1 Primitive Roots (M-7.1)

Given a positive integer p, a is a primitive root mod p if for every integer relatively prime to p,
there is a power of a that is congruent.

Root of Unity : a is a root of unity if there exists a k where ak ≡ 1 mod p

See the following table for F∗5. 4 is a root of unity. 2 and 3 are primitive roots.

ai a0 a1 a2 a3 ...
1 1 1 1 1 :(
2 1 2 4 3 :)
3 1 3 4 2 :)
4 1 4 1 4 :(

10.2 Quadratic Residues (M-7.1)

p is an odd prime number, a is any number where p doesn’t divide a so a mod p 6= 0 a is a quadratic
residue mod p if a is a square mod p. This means ∃x ∈ Zpx2 ≡ a mod p

Now, given what we know about symmetric and positive representation, we can assume the following
(in Z7). We know 6 and -1 are additive inverses, along with -2 and 5, and -3 and 4. Along with
this, we know x2 is always positive no matter whether x is positive or negative. This means if we
want to compute all the square roots of numbers mod 7, we only need to compute them for 1, 2,
and 3, as the results will hold. See the table below. 0 was omitted as it has no additive inverse.
I’m using a−1 as additive inverse in the below table.

a 1 2 3 4 5 6
a−1 -6 -5 -4 -3 -2 -1

a2 mod p 1 4 2 2 4 1

Extending the above regarding (−x)2 = x2, we can derive the following:

21

(−x)2 = (p− x)2

(p− x)2 = p2 − 2xp+ x2

p2 − 2xp+ x2 ≡ a mod p

Now some properties (given p is an odd prime):

• The product of two quadratic residues mod p is also a quadratic residue mod p

• The product of a quadratic residue mod p and a quadratic nonresidue mod p is not a quadratic
residue mod p

• The product of two quadratic nonresidues mod p is a quadratic residue mod p

10.3 Euler’s Criterion

Now Euler, as always a much smarter man than I am, found that a is a quadratic residue where an
x exists such that a ≡ x2 mod p , p is prime, and a is coprime to p iff:

a
p−1
2 ≡ 1 mod p

In addition to this, b is a quadratic nonresidue iff:

b
p−1
2 ≡ −1 mod p

10.3.1 Legendre Symbols

Given p is an odd prime, the Legendre Symbol of a is:

(
a

p

)
=


−1 a is a quadratic nonresidue mod p

0 p | a
1 a is a quadratic residue mod p

Now we love fun properties!!!

• Product Rule :
(
a
p

)
∗
(
b
p

)
=
(
ab
p

)
• Reduction Rule : a ≡ b mod p =⇒

(
a
p

)
=
(
b
p

)
• Quadratic Reciprocity : Given p and q are prime, then:

(
p
q

)
=
(
q
p

)

22

10.3.2 Jacobi Symbol

Jacobi symbol is good for avoiding knowing the factors of a numerator, or when the numerator is
prime so that a reduction is still possible.

Given a and b integers where b is odd and positive, and a is anything. b’s prime factorization is:

b = pe11 ∗ p
e2
2 ∗ ... ∗ penn

The resulting Jacobi symbol is:

(a
b

)
=

(
a

p1

)e1
∗
(
a

p2

)e2
∗ ... ∗

(
a

pn

)en
More properties because we can’t get enough!

•
(
0
a

)
= 0

•
(
1
a

)
= 1

• Product Rule : For “numerators”
(
ac
b

)
=
(
a
b

)
∗
(
c
b

)
• Product Rule : For “denominators”

(
a
bc

)
=
(
a
b

)
∗
(
a
c

)
• Reduction Rule :

(
a
b

)
=
(
a mod b

b

)
• Quadratic Reciprocity : If a and b are both odd, then

(
a
b

)
=
(
b
a

)
If a ≡ 3 mod 4 AND

b ≡ 3 mod 4 then
(
a
b

)
= −

(
b
a

)
Proof Regarding mod 4

This mod 4 thing is really confusing to me, and I’m still confused why we choose the number 4,
buy anyway. Given that p is a prime number, p mod 4 will NEVER equal 2 or 0 since that would
require p being even, which it’s not and will never be. Given the base case a = −1 we can do the
following:

p ≡ 1 mod 4

p = 4k + 1(
a

p

)
≡ a

p−1
2 mod p(

−1

p

)
≡ −1

(4k+1)−1
2(

−1

p

)
≡ −1

4k
2(

−1

p

)
≡ −12k(

−1

p

)
≡ 1

p ≡ 3 mod 4

p = 4k + 3(
a

p

)
≡ a

p−1
2 mod p(

−1

p

)
≡ −1

(4k+3)−1
2(

−1

p

)
≡ −1

4k+2
2(

−1

p

)
≡ −12k+1(

−1

p

)
≡ −1

23

10.3.3 Finding Quadratic Roots

While Legendre/Jacobi symbol answers where a number a mod p has a square root, it does not
give a way to compute the square root.

When p ≡ 3 mod 4 and a is a quadratic residue mod p, then x2 = a
p+1
4 mod p

10.3.4 Tonelli-Shanks Algorithm

Used to find x when x2 ≡ a mod p when p is prime. This is helpful when p 6≡ 3 mod 4

Given that p is prime and a is a quadratic residue of p.

The Implementation In Maple:

TS := proc(a, p)

to find Q and S where p-1 = Q2^S

Q := p - 1:

S := 0:

while Q mod 2 = 0 do:

S := S + 1:

Q := Q / 2:

end do:

find a quadratic nonresidue z

z := 1:

while z^((p-1)/2) mod p = 1 do:

z := z + 1;

end do:

Set up

M := S mod p:

c := z^Q mod p:

t := a^Q mod p:

R := a^((Q+1)/2) mod p:

Loop

while 1 = 1 do:

if t = 0 then:

return 0;

elif t = 1 then:

return R;

else:

i := 0;

while i < M do:

if t^(2^i) mod p = 1 then:

break:

end if:

i := i + 1:

24

end do:

b := c^(2^(M-i-1)) mod p:

M := i:

c := (b * b) mod p:

t := (t * b * b) mod p:

R := (R * b) mod p:

end if;

end do:

end proc:

10.4 Birthday Paradox

This is regarding the probability of collisions kinda relating the to pidgeonhole principle.

Pidgeonhole Principle : If there are n holes and n + 1 elements there will be a collision when
trying to sort them

There are two main questions to answer

1. What is the probability someone has the same birthday as you?

2. What is the probability at least two people share the same birthday?

The answer to question 1 is simple, the chance someone has the same birthday as me out of n
people is the same as one minus the chance someone doesnt have the same birthday as me. That
means for 1 person not having the same birthday as me, theres a 364/365 chance. With n people:

P (n) = 1−
n∏
i=1

364

365

P (n) = 1− (
364

365
)n

Now for question 2, we want the chances of no one having the same birthday, then find the inverse
of that. So now we see the following:

P (n) = 1−
n∏
i=1

365− (i− 1)

365

This sets us up for finding the probability of collisions in Discrete Logarithm Problems

25

11 Goldwasser-Micali Encryption (M-7.2)

The first probabilistic public-key encryption scheme which is provably secure under standard cryp-
tographic assumptions. Not efficient, the cyphertexts may be several hundred times longer than
the original plain text message. There are three main parts/subalgorithms to this algorithm

Public Key : (N, a) where N = pq and x is a quadratic residue mod N . Can be verified knowing
the factorization of N

Private Key : (p, q), the factorization of N

11.1 Part 1 : Key Generation

1. Generate distinct large primes p and q randomly and independently

2. Compute N = pq

3. Find an x such that
(
x
p

)
=
(
x
q

)
= −1 This x value can be found by selecting random values

and testing. If p ≡ 3 mod 4 and q ≡ 3 mod 4 then N − 1 is guaranteed to work

11.2 Part 2 : Message Encryption

1. Encode m as a string of bits m1, ...,mn

2. For every mi, generate a random yi where gcd(yi, N) = 1

3. ci = y2i x
mi mod N

11.3 Part 3 : Message Decryption

1. For each i, using determine if ci is a quadratic residue, if so mi = 0 otherwise, mi = 1

2. m = m1, ...,mn

26

12 Discrete Logarithm Problems (M-7.2, 8.2)

Given a finite field F∗p and a primitive root g of that field, a discrete log problem is: given a value
h, solve gx = h mod p for x. Can also be written as logg(h) = x

12.1 Brute Force

Test values of x until a valid one is found. This runs in O(x) time where x is an unknown value.

12.2 Shanks Algorithm

Las Vegas Algorithm : A randomized algorithm that always gives the correct answer but may
use a lot or a little resources
Monte Carlo Algorithm : A randomized algorithm who’s output may be incorrect with certain,
typically small probability. Use repeated random sampling to obtain numeric results

I don’t know which Shanks is yet.

Once again, given our DLP where gx = hmodp, there needs to be an easier way than brute forcing
to find the problem. We first get our variables.

N = p− 1

n = 1 + b
√
Nc

From there, two lists are created:

l1 = 1, g1, g2, ..., gn

l2 = h, hg−n, hg−2n, ...

Use these two lists to find a match where:

l1i = l2j

gi = hg−jn

h = gigjn

Using simple algebra, we then find that the solution x = i+ jn

27

13 ElGamal Encryption (M-8.1)

13.1 Key Generation

1. Pick a large prime p

2. Choose a g that is high order

3. Pick an a > 0 such that A = ga mod p

Public Key : A, g, p
Private Key : a

Given large enough g and p the DLP is super difficult to solve.

13.2 Encryption

Given an encoded message m where 0 < m < p:

1. Pick a random number 0 < k < p

2. Compute c1 = gk mod p

3. Compute c2 ≡ mAk mod p

13.3 Decryption

Given a cyphertext (c1, c2):

1. Compute x ≡ (ca1)−1 mod p using EEA

2. Compute x ∗ c2 ≡ m

The justification:

x ∗ c2 ≡ (ca1)−1 ∗ c2 Definition of x

x ∗ c2 ≡ (gak)−1 ∗ c2 Definition of c1

x ∗ c2 ≡ (gak)−1 ∗ (m ∗Ak) Definition of c2

x ∗ c2 ≡ (gak)−1 ∗ (m ∗ (ga)k) Definition of A

x ∗ c2 ≡ (gak)−1 ∗ gak ∗m
x ∗ c2 ≡ 1 ∗m
x ∗ c2 ≡ m mod p

28

13.4 With Digital Signatures

ElGamal with digital signatures does not encrypt the plain text message. The message is used to
perform calculations, but it is not encrypted. The signature is computed with:

S1 = gk mod p

S2 = (D − aS1)k−1 mod (p− 1)

Then verified with:

(AS1SS2
1 mod p) = (gD mod p)

29

14 Blum Algorithm (M-9.1)

Also called the Blum-Micali Algorithm. A cryptographically secure psuedorandom number gener-
ator. The security comes from the difficulty of computing discrete logarithms.

Given p is an odd prime and g it’s primitive root and a seed x0, then

xi+1 = gxi mod p

The ith output is 1 if xi ≤ p−1
2 , otherwise it’s 0.

14.1 Blum Coin Flipping Protocol

Knowing that digital logarithm problems are very hard to solve, we can use that concept to create
a secure remote coin flipping protocol.

1. A and B agree to a large prime p such that p mod , and a primitive root a ∈ F∗p

2. A will “flip the coin” and B will “call heads/tails”

3. A chooses a random x

4. A computes y = ax mod p

5. A sends y to B

6. B guesses even or odd for the value of x

7. A sends B the value of x

8. B computes ax is y and whether their call was correct or not

Since DLPs are very hard to solve, there is no way for A to lie and choose a specific y to indicate
the parity of x and theres no way, looking at y for B to guess the parity of x.

14.2 Coin Flipping with RSA

Assume all messages are sent via RSA with both A and B encrypting each message with a signature.

1. B picks an n = pq where p and q are large odd primes and p ≡ q ≡ 3 mod 4. This is separate
from his RSA N

2. n has a publication date P . An 8 char string ddmmyyyy. This is only valid in the past 5
years.

3. B sends A n and P

4. A checks n ≡ 1 mod 4

5. A picks a random x ∈ Zn

30

6. A computes y = x2 mod n

7. A sends n, P , y

8. B verifies n and P

9. B picks b +1 or -1 for heads and tails respectively

10. B sense n, P , y, and b

11. A verifies n, P , y

12. A sends x

13. B wins if b =
(
x
n

)
15 Quantum Computing

15.1 Factoring

Small numbers with lots of small factors are easy to factor.

15.1.1 Fermats Algorithm

15.1.2 Pollard p-1

15.1.3 Quadratic Sieve

15.1.4 Shor’s

15.2 Qubits

31

	Course Calendar
	Functions
	Fast Powering (M-3.2)
	Modular Arithmetic (M-3.2)
	Divisibility (M-2.2)
	Equivalence Classes
	Representation
	Euler Phi Function
	Euler's Theorem

	Inverses
	Matrices
	Rings (M-5.1)
	Fields (M-7.1)

	Psuedoprime numbers
	Fermat Psuedoprimes
	Miler-Rabin Primality Test
	Prime Number Theorem

	PreModern Ciphers (M-1.1, 1.2, 2.1)
	Caesar Cipher
	Attacking
	Affine Cyphers

	Substitution Cipher
	One Time Pad
	Vigenere Cypher

	Euclidian Algorithm (M-3.1)
	Diophantine Equations
	Extended Euclidian Algorithm

	Chinese Remainder Theorem (M-5.1)
	Proof
	Constructive
	Solving Two Congruences
	Solving With a Summation

	RSA Encryption (M-4.2)
	Breaking with Chinese Remainder (M-5.1)
	Signatures (M-5.2)
	Man-In-The-Middle Attacks (M-6.1)

	Post-Midterm Math
	Primitive Roots (M-7.1)
	Quadratic Residues (M-7.1)
	Euler's Criterion
	Legendre Symbols
	Jacobi Symbol
	Finding Quadratic Roots
	Tonelli-Shanks Algorithm

	Birthday Paradox

	Goldwasser-Micali Encryption (M-7.2)
	Part 1 : Key Generation
	Part 2 : Message Encryption
	Part 3 : Message Decryption

	Discrete Logarithm Problems (M-7.2, 8.2)
	Brute Force
	Shanks Algorithm

	ElGamal Encryption (M-8.1)
	Key Generation
	Encryption
	Decryption
	With Digital Signatures

	Blum Algorithm (M-9.1)
	Blum Coin Flipping Protocol
	Coin Flipping with RSA

	Quantum Computing
	Factoring
	Fermats Algorithm
	Pollard p-1
	Quadratic Sieve
	Shor's

	Qubits

