
CS-260 : Notes

Charlie Stuart : src322

Winter 2019

Note: I made up the seciton order because I’m quirky

Based on my notes from CS-260 in the winter 2019 with Kurt, but then done in C.

Contents

1 Other Resources 4

2 Math Review 5

2.1 Set Theory . 5

2.2 Functions . 6

2.3 Summations . 6

2.4 Limits . 8

2.5 Logarithms . 8

3 Big-Oh / Runtime 9

3.1 Asymptotic Notation . 9

3.1.1 Table of Informal Definitions . 9

3.1.2 Table of Formal Definitions . 9

3.1.3 Table of Limit Definitions . 10

3.1.4 Properties . 10

4 Linked Lists 11

4.1 Functions . 11

4.2 Implementations . 11

1

5 Stacks 13

6 Queues 14

6.1 Priority Queues . 14

7 Hash Tables 15

8 Sorting 16

8.1 Selection Sort . 16

8.2 Insertion Sort . 18

8.3 Bubble Sort . 19

8.4 Quick Sort . 20

8.5 Merge Sort . 23

8.6 Radix Sort . 25

9 Trees 26

9.1 Tries . 27

9.2 Parse Trees . 28

9.3 Binary Search Tree . 29

9.4 Heaps . 31

9.5 Merge-Find Sets . 34

9.5.1 Path Compression . 34

9.6 Huffman Codes . 36

10 Graphs 38

10.1 Bipartide Graphs . 40

10.2 Directed Acyclic Graphs (DAG) . 41

10.3 Breadth First Search . 42

10.4 Depth First Search . 43

10.5 Prim’s Spanning Tree . 46

10.6 Kruskal’s Spanning Tree . 48

10.7 Floyd-Warshaw’s Shortest Path . 50

2

10.8 Dijkstra’s Shortest Path . 51

List of Algorithms

1 Selection Sort . 16
2 Insertion Sort . 18
3 Bubble Sort . 19
4 Quick Sort . 21
5 Merge Sort . 23
6 Merge Sort helper function . 24
7 Heap Implementation Functions . 31
8 Heap Helper Functions . 32
9 Heap Sort . 33
10 Merge-Find Set . 34
11 Merge-Find Set with Path Compression . 35
12 Breadth First Search . 42
13 Depth First Search . 45
14 Prim’s Algorithm . 47
15 Kruskal’s Algorithm . 49
16 Floyd-Warshaw Algorithm . 50
17 Dijksta’s Algorithm . 51

3

1 Other Resources

Algorithm Visualization : https://www.cs.usfca.edu/%7Egalles/visualization/Algorithms.html

B-Tree Visualization : https://www.cs.usfca.edu/~galles/visualization/BTree.html

Gnarley Trees : https://people.ksp.sk/~kuko/gnarley-trees/

Red/Black Tree Visualization : https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

Sorting Video : https://www.youtube.com/watch?v=kPRA0W1kECg

Sorting Visualization : https://www.toptal.com/developers/sorting-algorithms

Sorting Visualization Again : https://www.hackerearth.com/practice/algorithms/sorting/bubble-sort/
tutorial/

4

https://www.cs.usfca.edu/%7Egalles/visualization/Algorithms.html
https://www.cs.usfca.edu/~galles/visualization/BTree.html
https://people.ksp.sk/~kuko/gnarley-trees/
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
https://www.youtube.com/watch?v=kPRA0W1kECg
https://www.toptal.com/developers/sorting-algorithms
https://www.hackerearth.com/practice/algorithms/sorting/bubble-sort/tutorial/
https://www.hackerearth.com/practice/algorithms/sorting/bubble-sort/tutorial/

2 Math Review

2.1 Set Theory

From pages 3-7 in Introduction to the Theory of Computation by Michael Sipser

Set : A group of objects represented as a unit
Element : An object in a set
Member : An object in a set
Multi Set : An set containing an element that occurs multiple times
Subset : A set that consists of elements that exist in a different set
Proper Subset : A set that is a subset of another set, but not equal
Infinite Set : A set of infinitely many elements
Empty Set : A set of no elements
Singleton Set : A set of one elements
Unordered Pair : A set of two elements
Sequence : A set in a specific order
Tuple : A finite set
k-Tuple : A tuple of k elements
Ordered Pair : A 2-tuple
Power Set : All the subsets of A
∈ : Is a member of
∉ : Is not a member of
⊂ : Is a proper subset of
/⊂ : Is not a proper subset of
⊆ : Is a subset of
⊈ : Is not a subset of
∪ : Union of two sets
∩ : Intersection of two sets
× : Cross product of two sets
N : Set of natural numbers
Z : Set of integers
Q : Set of rational numbers
A : Set of algebraic numbers
R : Set of real numbers

A set is defined in a few ways

S = {7, 21, 57} Finite Set

S = {1, 2, 3...} Infinite Set of all natural numbers N
S = {7, 7, 21, 57} Multi Set

S = ∅ Empty Set

S = {5} Singleton Set

S = {5, 3} Unordered pair

S = {n∣n = m2
for some m ∈ N} Set of perfect squares

The union of two sets is the same as an OR operator in boolean algebra. It’s all the elements in both sets.

5

A = {1, 2, 3}
B = {3, 4, 5}

A ∪B = {1, 2, 3, 4, 5}

The intersection of two sets is the same as an AND operator in boolean algebra. It’s all the elements that
appear only in both sets.

A = {1, 2, 3}
B = {3, 4, 5}

A ∩B = {3}

The Cartesian product, or cross product, of two sets is the set of all ordered pairs where the first element is
a member of the first set and the second element is a member of the second set for every combination.

A = {1, 2}
B = {x, y, z}

A ×B = {(1, x), (2, x), (1, y), (2, y), (1, z), (2, z)}

2.2 Functions

From pages 7-8 in Introduction to the Theory of Computation by Michael Sipser

Function : An objects that sets up an input-output relationship
Domain : The set of possible inputs to a function
Range : The set of possible outputs to a function

f ∶ D → R Function f has domain D and range R

2.3 Summations

From CLRS Appendix A

REMEMBER : Summations are inclusive

Constants can be “taken out”:

6

n

∑
i=1

cxi = c
n

∑
i=1

xi

Addition can be broken up:

n

∑
i=1

(xi + yi) =
n

∑
i=1

xi +
n

∑
i=1

yi

Arithmetic Series :

n

∑
i=1

i = 1 + 2 + ... + n

n

∑
i=1

i =
1

2
n(n + 1)

n

∑
i=1

i ∈ Θ(n2)

Sum of Squares :

n

∑
i=0

i
2
=
n(n + 1)(2n + 1)

6

Sum of Cubes :

n

∑
i=0

i
3
=
n
2(n + 1)2

4

Geometric Series : When x ≠ 1 and is real

n

∑
i=0

x
i
= 1 + x + x

2
+ ... + x

n

n

∑
i=0

x
i
=
x
n+1 − 1

x − 1

Geometric Series : When the summation is infinite and ∣x∣ < 1

∞

∑
i=0

x
i
=

1

1 − x

7

Harmonic Series :

H(n) = 1 +
1

2
+

1

3
+ ... +

1
n

H(n) =
n

∑
i=1

1

i

H(n) = lnn +O(1)

Logarithms :

S(n) =
n

∑
i=1

log (i)

S(n) = log (1) + log (2) + ... + log (n − 1) + log (n)
S(n) = log (1 ∗ 2 ∗ ... ∗ (n − 1) ∗ n)
S(n) = log (n!)

2.4 Limits

Indeterminate Forms : ±∞
±∞

, 0
0

2.5 Logarithms

logb (XY) = logb (X) + logb (Y)

logb (
X

Y
) = logb (X) − logb (Y)

logb (X
y) = y logb (X)

8

3 Big-Oh / Runtime

In order to make sure programs are efficient, they’re timed. We analyze their rate of growth and compare
them with other functions to describe them.

Worst Case : The slowest an algorithm can run on
an input of problem size n. Eg: Insertion sort on a
list of size n runs slowest when the list is sorted in the
reverse order
Best Case : The fastest an algorithm can run on an
input of problem size n. Eg: Insertion sort on a list of
size n runs fastest when the list is sorted to start
Average Case : The average run time of an algo-
rithm of all problem instances of size n

3.1 Asymptotic Notation

With asymptoic notations o,O,Θ,Ω, ω describe a set of functions. O(f(n)) describes all the functions bound
above by f(n).

3.1.1 Table of Informal Definitions

The ”Kinda like Saying” isn’t entirely correct, it’s just to wrap my head around the bounds and relations

Name Symbol Informal Definition Kinda like Saying
Little Omega ω Lower bound g(n) ∈ ω(f(n)) so g(n) > f(n)
Big Omega Ω Tight Lower bound g(n) ∈ Ω(f(n)) so g(n) ≥ f(n)
Big Theta Θ Both an upper and lower bound g(n) ∈ Θ(f(n)) so g(n) = f(n)

Big Oh O Tight Upper bound g(n) ∈ O(f(n)) so g(n) ≤ f(n)
Little Oh o Upper bound g(n) ∈ o(f(n)) so g(n) < f(n)

3.1.2 Table of Formal Definitions

Name Symbol Formal Definition
Little Omega ω g(n) ∈ ω(f(n)) ⟺ ∃c > 0, n0 > 0 ∋ g(n) > cf(n)∀n > n0
Big Omega Ω g(n) ∈ Ω(f(n)) ⟺ ∃c > 0, n0 > 0 ∋ g(n) ≥ cf(n)∀n > n0
Big Theta Θ g(n) ∈ Θ(f(n)) ⟺ ∃c1 > 0, c2 > 0, n0 > 0 ∋ c1 ≤ g(n) ≤ c2f(n)∀n > n0

Big Oh O g(n) ∈ O(f(n)) ⟺ ∃c > 0, n0 > 0 ∋ g(n) ≤ cf(n)∀n > n0
Little Oh o g(n) ∈ o(f(n)) ⟺ ∃c > 0, n0 > 0 ∋ g(n) < cf(n)∀n > n0

9

3.1.3 Table of Limit Definitions

Name Symbol Proving with Limits
Little Omega ω limn→∞ f(n)/g(n) =∞
Big Omega Ω limn→∞ f(n)/g(n) ≠ 0
Big Theta Θ limn→∞ f(n)/g(n) ≠ 0,∞

Big Oh O limn→∞ f(n)/g(n) ≠∞
Little Oh o limn→∞ f(n)/g(n) = 0

3.1.4 Properties

Transitivity :

• f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)) : f(n) ∈ O(h(n))

• f(n) ∈ Ω(g(n)) and g(n) ∈ Ω(h(n)) : f(n) ∈ Ω(h(n))

Reflexivity : f(n) ∈ Θ(f(n))

Transpose Symmetry : f(n) ∈ O(g(n) ⟺ g(n) ∈ Ω(f(n))

Symmetry : f(n) ∈ Θ(g(n)) ⟺ g(n) ∈ Θ(f(n))

Trichotomy : For any two real numbers a and b: a > b or a = b or a < b

10

4 Linked Lists

In Racket in CS-270, a list only had two elements. To create longer lists, you needed to nest lists.

(1, (2, (3, (4, 5))))

The structure of a linked list is similar. Each link has two parts, the data stored and a pointer to the next
link.

Doubly Linked List : A linked list with a pointer to the previous link in addition to the pointer to the
next

4.1 Functions

Function Runtime
End(L)→ p Linear
First(L)→ p Constant
Next(p, L)→ p Constant
Prev(p, L)→ p Constant*

Retrieve(p, L)→ x Constant
Append(x, L) Linear
Insert(x, p, L) Constant

Remove(p, L)→ x Constant
Find(x, L)→ p Linear
Size(L)→ x Constant*

4.2 Implementations

A Vector of Structs:

11

Parallel arrays:

12

5 Stacks

Last On, First Off abstract data structure. It’s like
stacking plates, whatever was put on most recently
has to come off before getting things under it.

Can be implemented over a linked list or an array:

Linked List : All operations occur on the
head, so operations only need to adjust the head
pointer

Array : All operations occur at the end of the
array, as long as the size variable is kept up to
date, operations are constant

Function Linked List Runtime Array Runtime
Init() Constant Constant

Empty?(S) Constant Constant
Push(x, S) Constant Constant
Pop(S)→ x Constant Constant
Peek(S)→ x Constant Constant

13

6 Queues

First In, First Out abstract data structure. It’s like a
fast food line. Whatever was added most recently has
to wait until the things before it are removed.

Implementing over a linked list allows for constant time operations. Adding elements happens at the head
by adjusting the head pointer. Removing elements happens at the tail by adjusting the tail pointer.

Functions Runtime
Init() Constant

Empty?(Q) Constant
Enqueue(x,Q) Constant

Dequeue(Q)→ x Constant
Peek(Q)→ x Constant

6.1 Priority Queues

Not exactly a queue. It behaves similarly, but isn’t implemented as one or has the same quick runtimes for
it’s functions. Elements are inserted one at a time, then removed in order.

Insert 4

Insert 2

Insert 5

Insert 3

Remove 2 Min Queue

5 Max Queue

Insert 1

Remove 1 Min Queue

4 Max Queue

Can be implemented a few ways

Ordered Array : Insert via comparison. Remove the first element then shift the rest. Insertion and
removal are both linear.

Unordered Array : Insert at the end of the array. Remove via comparison. Insertion is constant time,
but removal is linear.

14

7 Hash Tables

An abstract data structure composed of buckets to hold data. There’s a hash function that decides which
data goes in which bucket. Hash functions tend to be one way. Given a piece of data, it can be hashed to
get a new value. The new value cannot be unhashed to get the data. A good hash table with a good hash
function has an even distribution of data across buckets, and there is some connection from the bucket to
the data in it.

Open Hash Table
We have an array of buckets. Each array has a
pointer to a linked list where elements are stored.
The hash function sorts elements into a bucket
where the element is appended to the linked list.
Buckets don’t have a size cap, but more elements
in a bucket leads to more inefficient hashing.

Closed Hash Table
Implemented over an array. Each bucket can only
hold one element. If we’re trying to insert an ele-
ment but its bucket is full, the element is inserted
ito the next available bucket. If all buckets are
filled, the hash table needs to be resized.

Resizing a Hash Table

1. Create a new hash table twice the size of the old one

2. Update the hashing function based on the new size

3. Rehash all data into the new table using the new function

15

8 Sorting

8.1 Selection Sort

The general idea is very straight forward. Basically, sort the array by finding the minimum element and
making it the next element. It’s slow, but fast to implement. It’s ∈ O(n2) since finding the minimum of an
array is linear, then you need to do that for every element in the array.

Algorithm 1 Selection Sort

1: function SelectionSortA(A) // ∈ O(n2)
2: for i := 1→ A.length do
3: key := i
4: for j := i + 1→ A.length do
5: if A[j] < A[key] then
6: key := j
7: end if
8: end for
9: t := A[key]

10: A[key] := A[i]
11: A[i] := t
12: end for
13: end function

Pretending I hadn’t taken CS-457 and don’t know how to properly solve recurrence relations, we can make
an educated guess about function runtimes by unwinding recurrence relations. This isn’t a formal proof, just
an educated guess, but we’ll play along with what Kurt gave since there’s a lot more to proving a recurrence
relation.

16

S(n) = {d n ∈ {0, 1}
S(n − 1) + cn n > 1

S(n) = S(n − 1) + cn i = 1

S(n) = (S(n − 2) + c(n − 1)) + cn i = 2

= S(n − 2) + 2cn − c

S(n) = (S(n − 3) + c(n − 2)) + 2cn − c i = 3

S(n) = S(n − 3) + 3cn − (1 + 2)c

S(n) = S(n − k) + kcn − c
k−1

∑
i=1

i i = k

S(n) = S(0) + c2 − cn(n − 1)
2

n = k

S(n) = d + c
2

2
−
cn

2
∈ O(n2)

Basically, unwind the recurrence k times until the base case is reached. Based on the patterns seen, make
an educated guess about the runtime.

17

8.2 Insertion Sort

Inefficient, but another quick implementation. Traverse the array. As I reach a new element, put it in the
correct position in the sorted portion of the array.

This is less useful when trying to sort an existing array and more useful when you’re inserting an element
into an already existing sorted array. For example, a priority queue.

Algorithm 2 Insertion Sort

1: function InsertionSort(A) // ∈ O(n2)
2: for j := 2→ A.length do
3: key := A[j]
4: // Insert A[j] into the sorted sequence A[1...j − 1]
5: i := j − 1
6: while i > 0 and A[i] > key do
7: A[i + 1] := A[i]
8: i := i − 1
9: end while

10: A[i + 1] := key
11: end for
12: end function

18

8.3 Bubble Sort

Very inefficient, but to the point. It sorts elements by running through the array many times and swapping
elements that are out of order.

Algorithm 3 Bubble Sort

1: function BubbleSort(A) // ∈ O(n2)
2: for i := 1→ A.length − 1 do
3: for j := A.length→ i do
4: if A[j] < A[j − 1] then
5: t := A[j]
6: A[j] := A[j − 1]
7: A[j − 1] := t
8: end if
9: end for

10: end for
11: end function

19

8.4 Quick Sort

A quick sort is fairly simple. Pick a random “partition”. This partition is used as a post. We compare the
rest of the elements in the array to the partition and group them based on whether they are less than or
greater than the partition. We then recursively perform a quick sort on each of the new resulting arrays.

Quick sort is a fickle one. It’s runtime is dependent on the partition and how “good” it is. A good partition
cuts the array in half with an equal number of elements on each side. This makes our problem reduced by
half. A bad partition is one where all the elements are less than or greater than the partition. This gives
us two new problem sets. One where the problem is 0 elements. The other where the problem has n − 1
elements. The partition is chosen at random each iteration of the quick sort.

20

Algorithm 4 Quick Sort

function QuickSort(A, p, r) // Worst case ∈ O(n2), Best case ∈ O(n log (n))
if p < r then

q := Partition(A, p, r)
QuickSort(A, p, q − 1)
QuickSort(A, q + 1, r)

end if
end function
function Partition(A, p, r)

x := A[r]
i := p − 1 // i keeps track of where the “less than or equal to x” partition ends
for j := p→ r − 1 do

if A[j] ≤ x then
// Since we found another element less than the parition, increase the size of “less than” partition

and put the element in that parition
i := i + 1
t := A[i]
A[i] := A[j]
A[j] := t

end if
end for
// Put the pivot between the two partitions
t := A[i + 1]
A[i + 1] := A[r]
A[r] := t
return i + 1

end function

Once again, pretending CS-457 wasn’t a class I took and enjoyed and understood, we can unwind the
recurrence relation and make an educated guess about its runtime. With Quick Sort however, we have a
best case and worst case possibility we need to analyze.

Best Case:

Qb(n) = {d n ≤ 1

2Qb(n
2
) + n n > 1

Qb(n) = 2Qb(
n

2
) + n i = 1

Qb(n) = 2(2Qb(
n

4
) + n

2
) + n i = 2

Qb(n) = 4Qb(
n

4
) + 2n

Qb(n) = 2
k
Qb(

n

2k
) + kn i = k

Qb(n) = nQb(1) + n log (n) k = log (n)
Qb(n) = nQb(1) + n log (n) ∈ O(n log (n))

Worst Case:

21

Qw(n) = {d n ≤ 1

Qw(n − 1) + n n > 1

Qw(n) = Qw(n − 1) + n i = 1

Qw(n) = (Qw(n − 2) + n − 1) + n i = 2

Qw(n) = Qw(n − 2) + 2n − 1

Qw(n) = Qw(n − k) + kn i = k

Qw(n) = Qw(0) + n2 k = n

Qw(n) = d + n2 ∈ O(n2)

22

8.5 Merge Sort

Merge sort is consistently efficient in terms of time, not very effiecient in terms of space. We consistently
split the array in half until each array is sorted. We know for a fact that an array is sorted when there’s
only one element. So split the array until it’s only one element long, then, merge them. Once we have these
“sorted” one element arrays, we merge them back into full length arrays. When merging, since we know the
arrays we’re merging are sorted, we only need to compare the first elements of each array with each other,
then add the smaller element to the sorted array. This leads to a consistent O(n log (n)) runtime.

Algorithm 5 Merge Sort

1: function MergeSort(A, p, r) // ∈ O(n log (n))
2: if p < r then
3: q := ⌊p+r

2
⌋

4: MergeSort(A, p, q)
5: MergeSort(A, q + 1, r)
6: Merge(A, p, q, r)
7: end if
8: end function

23

Algorithm 6 Merge Sort helper function

1: function Merge(A, p, q, r)
2: n1 := q − p + 1
3: n2 := r − q
4: L := [1...n1 + 1] // A new array
5: R := [1...n2 + 1] // A new array
6: for i := 1→ n1 do
7: L[i] := A[p + i − 1]
8: end for
9: for j := 1→ n2 do

10: R[j] := A[q + j]
11: end for
12: L[n1 + 1] := ∞
13: R[n2 + 1] := ∞
14: i := 1
15: j := 1
16: for k := p→ r do
17: if L[i] ≤ R[j] then
18: A[k] := L[i]
19: i := i + 1
20: else
21: A[k] := R[j]
22: j := j + 1
23: end if
24: end for
25: end function

24

8.6 Radix Sort

Given the following set of Base 4 numbers of length 3, we can sort them digit by digit and sort them. This
can be easily implemented with a hash table.

25

9 Trees

A tree is a rooted abstract data structure with hierarchy. A tree has a root, which contains data, then x
children that “branch” off the root and also contain data. These children can be subtrees with children of
their own or leaves, which are trees without children.

Depth of a Vertex : The number of edges from the root to the vertex

Height of a Vertex : The number of edges from a leaf to the vertex

Height of a Tree : The number of edges from the deepest leaf to the root

Node A B C D E F G H I J K L
Depth 0 1 1 1 2 2 2 2 2 2 3 4
Height 4 1 1 3 0 0 0 2 0 0 1 0

26

9.1 Tries

I think the example Kurt used here was autocorrect. A trie has an alphabet, A string/word in a trie is
denoted by the extra dotted line in the diagram below. I really used the name of a pokemon as a string huh
If we traverse in pre-order (basically a depth first search) and print a word everytime we reach a “dotted
box” that denotes a word, we’ll print all the words in the trie’s dictionary in alphabetical order.

λ : The alphabet. The characters used in each string. In the case of the trie below, the alphabet is just the
26 letter English alphabet.

s : The length of the alphabet. ∣∣λ∣∣

L : The average string length

n : The number of strings in a trie

This can be stored as an array, but gets unwieldy. Each subtree needs s children.

27

9.2 Parse Trees

A parse tree, also called an expression tree, is mostly related to how compilers parse code and translate
expressions into mathematical expressions. A parse tree is almost always a binary tree meaning each root
has two children, a designated left and right child. Assume we have the following parse tree:

We can read this tree using three different notations.

Prefix : Parse in the order root, left, right. (* (- 4 5) (+ 7 (/ 1 2)))

Infix : Parse in the order left, root, right. ((4 - 5) * (7 + (1 / 2)))

Postfix : Parse in the order left, right, root. ((4 5 -) (7 (1 2 /) +) *)

28

9.3 Binary Search Tree

A binary tree is a tree where there’s only two children. One is a distinct left child, the other is a distinct
right child. We use this property to our advantage in a binary search tree. We can use the left child to
denote all elements less than the root and the right child to denote all elements greater than the root.

In a binary tree, the height has a best case and worst case growth depending on how filled a depth is.

Best Case:
Before incrementing the height, we fill each
height as much as possible. This way, we don’t
increase the height unless we have no other
choice. In this case, the height grows in log (n).

h n
0 1
1 3
2 7
3 15

h 2
h+1 − 1

Worst Case:
When we try to put only the required nodes to
get us to the next height at each height, the
height grows linearly.

h n
0 1
1 2
2 3
3 4
h h + 1

Now that we have this “left less than, right greater than” structure defined for storing data, we can using
this to make searching easier. Given a binary search tree (or just a sorted array) we can do a binary search
by checking the middle element and comparing it against what we’re looking for until we either reach the
element we’re looking for or we fall off the tree.

29

We can make an educated recurrence relation guess again:

B(n) = {d n ∈ {0, 1}
B(n

2
) + c n > 1

B(n) = B(n
2
) + c i = 1

B(n) = (B(n
4
) + c) + c i = 2

= B(n
4
) + 2c

B(n) = (B(n
8
) + c) + 2c i = 3

= B(n
8
) + 3c i = 3

B(n) = B(n
2k

) + kc i = k

1 =
n

2k

n = 2
k

k = log (n)
B(n) = B(1) + log (n)c k = log (n)
B(n) = d + log (n)c ∈ O(log (n))

30

9.4 Heaps

A binary tree with two extra properties:

1. It’s full. It fills left to right

2. Children are not X than parent

• Min Heap : Minimum element is at the top of the heap

• Max Heap : Maximum element is at the top of the heap

Never Forget,
the sexy heap shape

Can be implemented easily over an array Note: Indexed at 1 :

Algorithm 7 Heap Implementation Functions

1: function Parent(i)
2: return ⌊ i

2
⌋

3: end function
4:

5: function Left(i)
6: return 2i
7: end function
8:

9: function Right(i)
10: return 2i + 1
11: end function

31

Algorithm 8 Heap Helper Functions

1: function Upheap(i,H) // ∈ O(log (n))
2: // For a min heap, replace the > with a <
3: while i > 1 and H[i] > H[Parent(i)] do
4: swap(i, Parent(i), H)
5: i := Parent(i)
6: end while
7: end function
8:

9: function Downheap(i,H) // ∈ O(log (n))
10: if Left(i) ¿ H.size then return
11: end if
12: li := Left(i) // The index of the larger child
13: // For a min heap, replace the < with a >
14: if Right(i) ≤ H.size and H[li] < H[Right(i)] then
15: li := Right(i)
16: end if
17: // For a min heap, replace the > with a <
18: if H[i] < H[li] then
19: swap(i, li, H)
20: Downheap(li, H)
21: end if
22: end function
23: function Insert(x,H) // ∈ O(log (n))
24: ResizeArray?()
25: H.size := H.size + 1
26: H[H.size] := x
27: Upheap(H.size, H)
28: end function
29:

30: function Remove(H) // ∈ O(log (n))
31: if Empty?() then return
32: end if
33: ResizeArray?()
34: rv := H[1]
35: H[1] := H[H.size]
36: H.size := H.size - 1
37: Downheap(1, H) return rv
38: end function
39:

40: function BuildMaxHeap(A) // ∈ O(n log (n))
41: A.size := A.length
42: for i := ⌊A.length

1
⌋ down to 1 do

43: Downheap(i, A)
44: end for
45: end function

32

Since we know the heap has this property where the maximum/minimum element is always the root, by
putting a bunch of elements in a heap, the continually grabbing the root, we basically sort those elements.

Algorithm 9 Heap Sort

1: function HeapSort(A) // ∈ O(n log (n))
2: BuildMaxHeap(A)
3: for i := A.length down to 2 do
4: swap(1, i, A)
5: A.size := A.size - 1
6: Downheap(1, A)
7: end for
8: end function

33

9.5 Merge-Find Sets

Not technically a tree, but it’s with the tree stuff since it has a parent structure. It’s a set of data that can
be implemented over a map of parent pointers. In the map, the key is the node and the value is the parent
of the key.

Algorithm 10 Merge-Find Set

1: function Find(x, S) // ∈ O(Height)
2: // Finds x in set S and returns the parent
3: p := x
4: while S[p] ≠ −1 do
5: p := S[p]
6: end while
7: return p
8: end function
9: function Merge(x, y, S) // ∈ O(Height)

10: // As long as we point the smaller tree to the larger one, the height doesn’t grow
11: c1 := Find(x, S)
12: c2 := Find(y, S)
13: S[c2] := c1
14: end function

9.5.1 Path Compression

During a Find we walk up a tree to find the “ultimate parent”. As we climb, we point all the nodes we pass
to this “ultimate parent”. Eventually all nodes point to the root and look up is constant.

Before Compression After Find(h, S)

34

Algorithm 11 Merge-Find Set with Path Compression

1: function Find(x, S) // ∈ O(Height)
2: // Finds x in set S and returns the parent
3: p := x
4: while S[p] ≠ −1 do
5: p := S[p]
6: end while
7: t := x
8: u := t
9: while S[t] ≠ −1 do

10: u := S[t]
11: S[t] := p
12: t := u
13: end while
14: return p
15: end function

35

9.6 Huffman Codes

We can use Huffman trees to encode probabilities. Given the following pieces of data:

We then combine the two smallest pieces of data:

Using this new value, we repeat the process until we have a full tree:

In the final tree, each probability is a leaf. This means we will not pass probabilities as we fall down the tree
searching for probabilities. As we fall down the tree, we give each probability a binary code. If we fall left,
0. If we fall right, 1. This gives the following table:

36

Node Probability Code Code Length
a 0.13 000 3
b 0.33 01 2
c 0.19 10 2
d 0.12 001 3
e 0.23 11 2

Since all the letters are leaves, no probability is a prefix of another probability. We can concatenate all the
codes together and get the following encoding:

Encoding : adbce

Encoding : 000001011011

Then we can calculate the average code length using the lengths and probabilities:

A = (0.13 ∗ 3) + (0.33 ∗ 2) + (0.19 ∗ 2) + (0.12 ∗ 3) + (0.23 ∗ 2)
A = 2.25

37

10 Graphs

Graph : A collection of nodes, called vertices, containing data connected through edges. Edges can be di-
rected which allows for one way travel and hierarchy, or undirected where travel is allowed in both directions.

Path : A string of vertices connected by edges

Cycle : A path with repeated vertices

Predecessor Matrix
From u to v, the predecessor of v is u
These make more sense in a directed graph and
when building paths and spanning trees.
Currently, from A to B, since the graph is undi-
rected, A can be the predecessor of B and vice
versa. The matrix below only contains the edges,
but by applying various algoriths, we can fill this
in with paths. Currently, from D to E, there is
no predecessor. We can find a path between them
through C. This would make C the predecessor
of E from D.

π A B C D E F
A ∅ A A A ∅ ∅
B B ∅ B ∅ B ∅
C C C ∅ C C C
D D ∅ D ∅ ∅ D
E ∅ E E ∅ ∅ E
F ∅ ∅ F F F ∅

Distance Matrix
The full path distance from u to v.
The matrix below only contains the edges. This
shows that an edge (which is just a very short
path) between A and B exists and its of length
4. Once again, by applying algorithms we can
find longer paths between vertices. From D to
E, there currently is a infinite distance, mean-
ing there is no path yet. We can find the path
through C again and find the distance from D to
E to be 9.

d A B C D E F
A ∞ 4 2 5 ∞ ∞
B 4 ∞ 3 ∞ 6 ∞
C 2 3 ∞ 1 8 3
D 5 ∞ 1 ∞ ∞ 2
E ∞ 6 8 ∞ ∞ 1
F ∞ ∞ 3 2 1 ∞

38

Minimum Spanning Tree : A tree that connects all the vertices in a graph with the lowest possible
weighted edges

Cut : A parition of vertices. Shown as a vertical highlight below.

39

10.1 Bipartide Graphs

A specific type of graph with two “sides”. Nodes on the same “side” have no edges connecting them.

Matching : A node on one side has a node on the other. Shown below as dotted edges.

Perfect Matching : Every node has a unique partner on the other

40

10.2 Directed Acyclic Graphs (DAG)

A DAG is a fairly self explanatory type of graph. It’s directed and acyclic. This allows for it to act as a
graph of dependencies. The DAG below is about making pasta, sauce, and meatballs. You can’t cook the
onions and garlic in a pan without first chopping the onions and garlic and also heating the oil. The boiling
of the pasta isn’t dependent on whether or not the sauce is cooked, so it gets its own branch. I could’ve
added a vertex for reheating sauce that was previously cooked, but I chose not to make the graph more
complicated.

Source : A vertex without any in edges

Sink : A vertex without any out edges

A DAG can be topologically sorted using a depth-first search. This sorts the vertices in order such that
there are no backedges. I did my best to topologically sort my recipe DAG, but it got a bit unwieldy.

41

10.3 Breadth First Search

In a breadth first search (BFS), we first check each child, then we traverse each of the childrens’ children.
We don’t move onto the next depth until we’ve already completed one.

We can use a BFS to make a spanning tree. It’s not a minimum spanning tree, but it is a tree that spans.
Below is a the result of a BFS starting at A.

Algorithm 12 Breadth First Search

1: function BFS(G(V,E), s) // ∈ O(V 2)
2: n := ∣∣V ∣∣
3: vg := [] // A Map
4: rv := {} // A Set
5: for ∀v ∈ V do
6: vg[v] := False

7: end for
8: vg[s] := True

9: for ∀v ∈ adj(s,G) do
10: if not vg[v] then
11: vg[v] := True

12: rv := rv ∪ (s, v)
13: end if
14: end for
15: for ∀v ∈ adj(s,G) do
16: BFS(G, v)
17: end for
18: return rv
19: end function

42

10.4 Depth First Search

A depth first search (DFS) is like the opposite of a breadth first search (BFS). Instead of trying to complete
a depth and traversing all the children first, a DFS “falls” all the way to the furthest child/neighbor, then
works its way back.

Like a BFS, a DFS makes a spanning tree. Once again, not minimum, just a tree that spans. Based on the
discovery times, we get a variety of interesting properties about the graph and vertices. Part of this is what
makes a DAG topologically sorted. Below shows the result of a DFS on a graph:

Discovery Time : When the vertex was “found” or first seen in the DFS. In the image above, the first
number on the vertex.

Finishing Time : When all the children of the vertex were fully traversed in the DFS. In the image above,
the second number on the vertex.

Tree Edge : An edge (u, v) that’s a part of the spanning tree created during a DFS. In the image above,
denoted by a highlighted yellow edge. u has been discovered and is “gray”, v hasn’t been discovered yet and
is “white”.

Cross Edge : An edge (u, v) where v has been finished and is “black” while u is still in progress and is
“gray”. In the above diagram, denoted by a solid black line.

Forward Edge : An edge (u, v) where v is a child of u or one of it’s children and v has already been
discovered by another child of u. This is when v is “black” and u is still “gray”. In the above diagram,
denoted by a dotted black line.

Back Edge : An edge (u, v) where u is a child of v. Both u and v are “gray”. In the above diagram,
denoted by a dashed black line.

43

The colors of the node denote how discovered a vertex is.

• White : Not yet seen in the algorithm

• Gray : Has been seen in the algorithm, but it’s children are still being traversed.

• Black : (Yellow in the step by step images below) The vertex and its children have been fully traversed.

In action, this looks like:

44

Algorithm 13 Depth First Search

1: function DFS(G(V,E), s) // ∈ O(E)
2: d[s] := time // Discovery time
3: time := time + 1
4: for ∀v ∈ adj(s,G) do
5: if color(v) ≡ white then
6: color(v) := gray
7: π[v] := s
8: DFS(G, s)
9: end if

10: end for
11: color(s) := black
12: f[s] := time // Finishing time
13: time := time + 1
14: end function
15: function DFS-Exec(G(V,E)) // ∈ O(V E)
16: time := 0
17: for ∀v ∈ V do
18: color(v) := white
19: π[v] := ∅
20: end for
21: for ∀v ∈ V do
22: if color(v) ≡ white then
23: color(v) := gray
24: DFS(G, v)
25: end if
26: end for
27: end function

45

10.5 Prim’s Spanning Tree

Prim’s algorithm finds a minimum spanning tree in a graph. It is not the most minimum spanning tree,
but it is a minimum spanning tree. It’s a greedy algorithm, and only pays attention to what it sees in the
moment, not the full picture.

We need a starting point, and make a cut in the graph isolating that vertex. Then, add the minimum edge
that bridges that cut. Below, the process is shown step by step. The starting point is A. As edges are added
the the minimum spanning tree, they get highlighted. Vertices in the tree are dotted.

46

Algorithm 14 Prim’s Algorithm

1: function Prim(G(V,E), s) // Priority Queue ∈ O((V + E) log (V)) Unordered Array ∈ O(V 2)
2: for ∀v ∈ V do
3: key[v] := ∞ // Edge weights
4: π[v] := ∅
5: end for
6: key[s] := 0
7: PQ := MinQ(keys)
8: while not Empty?(PQ) do
9: x := Pop(PQ) // PQ ∈ O(V log (V)) UA ∈ O(V 2)

10: for ∀v ∈ adj(x,G) do
11: if key[v] > wt(x, v) then
12: key[v] := wt(x, v) // PQ ∈ O(E log (V)) UA ∈ O(E)
13: π[v] := x
14: end if
15: end for
16: end while
17: end function

47

10.6 Kruskal’s Spanning Tree

Kruskal’s algorithm, like Prim’s, finds a minimum spanning tree, not the most minimum spanning tree.
Unlike Prim’s, Kruskal’s isn’t greedy. It looks at the full picture instead of only the relevant nodes at a time.

The algorithm doesn’t need a starting point and instead takes all the edges and orders them by weight. As
long as the most minimum edge isn’t redundant, it gets added to the tree. Below, vertices in the tree have
a dotted outline. As edges are added to the spanning tree, they get highlighted.

48

Algorithm 15 Kruskal’s Algorithm

1: function Kruskal(G(V,E)) // ∈ O(E log (E))
2: rv := {} // A Set
3: S := MFSet(v)
4: l := Sorted(E,wt, incr) // Sort the edged by weight increasing
5: for ∀(u, v) ∈ l do
6: if Find(u, S) ≠ Find(v, S) then
7: rv := rv ∪ (u, v)
8: Merge(u, v, S)
9: end if

10: end for
11: return rv
12: end function

49

10.7 Floyd-Warshaw’s Shortest Path

This one wasn’t covered so much. Kurt cared much more about Dijkstra. Floyd-Warshaw finds the shortest
paths between vertices. It’s straightforward and horribly inefficient. It also doesn’t work with on negative
cycles. To quote Kurt, “If you could walk in a circle and get younger, you’d do it forever.”

Algorithm 16 Floyd-Warshaw Algorithm

1: function FloydWarshaw(G(V,E)) // ∈ O(V 3)
2: n := ∣∣V ∣∣
3: for i := 1→ n do
4: for j := 1→ n do
5: if (i, j) ∈ E then
6: d[i, j] := wt(i, j)
7: π[i, j] := i
8: else
9: d[i, j] := ∞

10: π[i, j] := ∅
11: end if
12: end for
13: end for
14: for k := 1→ n do
15: for i := 1→ n do
16: for j := 1→ n do
17: if d[i, j] > d[i, k] + d[k, j] then
18: d[i, j] := d[i, k] + d[k, j]
19: π[i, j] := π[k, j]
20: end if
21: end for
22: end for
23: end for
24: end function

50

10.8 Dijkstra’s Shortest Path

Dijkstra, my beloved.

Dijkstra’s shortest path algorithm finds the shortest path to all nodes in a graph from a source vertex. It’s
easy to modify this for a target, just stop the algorithm once the target is seen.

Dijkstra is greedy and similar to Floyd-Warshaw, it doesn’t work with negative paths.

Dijkstra’s runtime is heavily dependent on the data structures used to implement it. Below, a priority queue
was used.

Algorithm 17 Dijksta’s Algorithm

1: function Dijkstra(G(V,E), s) // ∈ O(V E)
2: for ∀v ∈ V do
3: π[v] := ∅
4: d[v] := ∞
5: end for
6: d[s] := 0
7: PQ := MinQ(d)
8: while not Empty?(PQ) do
9: x := Pop(PQ)

10: for ∀v ∈ adj(x,G) do
11: if d[x] + wt(x, v) < d[v] then
12: π[v] := x
13: d[v] := d[x] + wt(x, v)
14: end if
15: end for
16: end while
17: end function

51

	Other Resources
	Math Review
	Set Theory
	Functions
	Summations
	Limits
	Logarithms

	Big-Oh / Runtime
	Asymptotic Notation
	Table of Informal Definitions
	Table of Formal Definitions
	Table of Limit Definitions
	Properties

	Linked Lists
	Functions
	Implementations

	Stacks
	Queues
	Priority Queues

	Hash Tables
	Sorting
	Selection Sort
	Insertion Sort
	Bubble Sort
	Quick Sort
	Merge Sort
	Radix Sort

	Trees
	Tries
	Parse Trees
	Binary Search Tree
	Heaps
	Merge-Find Sets
	Path Compression

	Huffman Codes

	Graphs
	Bipartide Graphs
	Directed Acyclic Graphs (DAG)
	Breadth First Search
	Depth First Search
	Prim's Spanning Tree
	Kruskal's Spanning Tree
	Floyd-Warshaw's Shortest Path
	Dijkstra's Shortest Path

